Home
Class 12
MATHS
Prove that the identities, sin^-1 cos(s...

Prove that the identities, `sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2`,`|x|<=1`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

cos(a sin ^(-1)"1/x)

Prove the following identities: sin^4A-cos^4A=sin^2A-cos^2A=2sin^2A-1=1-2cos^2A

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

Prove the following identities : (sin A + cos A)/ (sin A - cos A) + (sin A - cos A)/ (sin A + cos A) = (2)/ (2 sin^(2) A - 1)

Prove the following identities : (sin A - cos A + 1)/(sin A + cos A - 1) = (cos A)/ (1 - sin A)

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .