Home
Class 11
CHEMISTRY
{:(,"Column-I",,"Column-II",),(,,,("mass...

`{:(,"Column-I",,"Column-II",),(,,,("mass of product"),),((A),2H_(2)+O_(2)rarr2H_(2)O,(p),1.028 g,),(,lg" "lg,,,),((B),3H_(2) +N_(2) rarr2NH_(3),(q),1.333 g,),(,lg " " lg,,,),((C),H_(2) + CI_(2) rarr 2HCI ,(r),1.125 g,),(,lg " "lg ,,,),((D),2H_(2) + C rarrCH_(4),(s),1.214 g,),(,lg " "lg,,,):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of matching the chemical equations with their respective mass of products, we will analyze each reaction step by step. ### Step 1: Analyze Reaction A **Reaction:** \( 2H_2 + O_2 \rightarrow 2H_2O \) 1. **Molar Mass Calculation:** - Molar mass of \( H_2 = 2 \, \text{g/mol} \) - Molar mass of \( O_2 = 32 \, \text{g/mol} \) - Molar mass of \( H_2O = 18 \, \text{g/mol} \) 2. **Assuming 1 g of \( O_2 \):** - Moles of \( O_2 = \frac{1 \, \text{g}}{32 \, \text{g/mol}} = \frac{1}{32} \, \text{mol} \) 3. **Calculate Moles of \( H_2O \):** - From the reaction, \( 1 \, \text{mol} \, O_2 \) produces \( 2 \, \text{mol} \, H_2O \). - Therefore, \( \frac{1}{32} \, \text{mol} \, O_2 \) produces \( 2 \times \frac{1}{32} = \frac{1}{16} \, \text{mol} \, H_2O \). 4. **Calculate Mass of \( H_2O \):** - Mass of \( H_2O = \text{moles} \times \text{molar mass} = \frac{1}{16} \times 18 = 1.125 \, \text{g} \) **Match:** A matches with (r) 1.125 g. ### Step 2: Analyze Reaction B **Reaction:** \( 3H_2 + N_2 \rightarrow 2NH_3 \) 1. **Assuming 1 g of \( N_2 \):** - Moles of \( N_2 = \frac{1 \, \text{g}}{28 \, \text{g/mol}} = \frac{1}{28} \, \text{mol} \) 2. **Calculate Moles of \( NH_3 \):** - From the reaction, \( 1 \, \text{mol} \, N_2 \) produces \( 2 \, \text{mol} \, NH_3 \). - Therefore, \( \frac{1}{28} \, \text{mol} \, N_2 \) produces \( 2 \times \frac{1}{28} = \frac{1}{14} \, \text{mol} \, NH_3 \). 3. **Calculate Mass of \( NH_3 \):** - Molar mass of \( NH_3 = 17 \, \text{g/mol} \) - Mass of \( NH_3 = \frac{1}{14} \times 17 = 1.214 \, \text{g} \) **Match:** B matches with (s) 1.214 g. ### Step 3: Analyze Reaction C **Reaction:** \( H_2 + Cl_2 \rightarrow 2HCl \) 1. **Assuming 1 g of \( Cl_2 \):** - Moles of \( Cl_2 = \frac{1 \, \text{g}}{71 \, \text{g/mol}} = \frac{1}{71} \, \text{mol} \) 2. **Calculate Moles of \( HCl \):** - From the reaction, \( 1 \, \text{mol} \, Cl_2 \) produces \( 2 \, \text{mol} \, HCl \). - Therefore, \( \frac{1}{71} \, \text{mol} \, Cl_2 \) produces \( 2 \times \frac{1}{71} = \frac{2}{71} \, \text{mol} \, HCl \). 3. **Calculate Mass of \( HCl \):** - Molar mass of \( HCl = 36.5 \, \text{g/mol} \) - Mass of \( HCl = \frac{2}{71} \times 36.5 = 1.028 \, \text{g} \) **Match:** C matches with (p) 1.028 g. ### Step 4: Analyze Reaction D **Reaction:** \( 2H_2 + C \rightarrow CH_4 \) 1. **Assuming 1 g of \( C \):** - Moles of \( C = \frac{1 \, \text{g}}{12 \, \text{g/mol}} = \frac{1}{12} \, \text{mol} \) 2. **Calculate Moles of \( CH_4 \):** - From the reaction, \( 1 \, \text{mol} \, C \) produces \( 1 \, \text{mol} \, CH_4 \). - Therefore, \( \frac{1}{12} \, \text{mol} \, C \) produces \( \frac{1}{12} \, \text{mol} \, CH_4 \). 3. **Calculate Mass of \( CH_4 \):** - Molar mass of \( CH_4 = 16 \, \text{g/mol} \) - Mass of \( CH_4 = \frac{1}{12} \times 16 = 1.333 \, \text{g} \) **Match:** D matches with (q) 1.333 g. ### Summary of Matches: - A matches with (r) 1.125 g - B matches with (s) 1.214 g - C matches with (p) 1.028 g - D matches with (q) 1.333 g
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MOLE CONCEPT

    ALLEN|Exercise Comprehension # 1|3 Videos
  • MOLE CONCEPT

    ALLEN|Exercise Comprehension # 2|3 Videos
  • MOLE CONCEPT

    ALLEN|Exercise EXERCISE - 02|46 Videos
  • IUPAC NOMENCLATURE

    ALLEN|Exercise Exercise - 05(B)|7 Videos
  • QUANTUM NUMBER & PERIODIC TABLE

    ALLEN|Exercise J-ADVANCED EXERCISE|24 Videos

Similar Questions

Explore conceptually related problems

In the reaction 2H_(2)(g) + O_(2)(g) rarr 2H_(2)O (l), " "Delta H = - xkJ

H_(2)(g)+(1)/(2)O_(2)(g)rarrH_(2)O(l), DeltaH =- 286 kJ 2H_(2)(g)+O_(2)(g)rarr2H_(2)O(l)……………kJ(+-?)

{:(List - I , List - II),((A) N_(2) + O_(2) hArr 2NO,(P) (atm)^(-2)),((B) 2SO_(2)(g) + O_(2) hArr 2SO_(3)(g),(Q) "No unit"),((C) H_(2) + I_(2) hArr 2HI,(R)"No cffect of pressure"),((D) N_(2)(g) + 3H_(2) (g) hArr 2NH_(3)(g), (S) "High pressure favours forward reaction"):}

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g) + 3H_(2)(g) rarr 2NH_(3)(g), " "Delta H_(2) H_(2)(g) + Cl_(2)(g) rarr 2HCl(g), " "Delta H_(3) The heat of formation of NCl3(g) in the terms of DeltaH_(1), DeltaH_2 and DeltaH_(3) is :

{:("Column-I (F.R.Favourable)","COlumn-II"),((A) H_(2(g)) + I_(2(g)) hArr 2HI_((g)) + Q,(P)"High temperature"),((B) 2SO_(2(g)) + O_(2(g)) hArr 2SO_(3(g)) + Q,(Q)"Low temperature "),((C) 2NH_(3(g)) hArr N_(2(g)) + 3H_(2(g)) - Q,(R)"High pressure"),((D) PCl_(5(g)) hArr PCl_(3(g)) + Cl_(2(g)) - Q,(S)"Low pressure"):}

NH_(3)(g) + 3Cl_(2)(g) rarr NCl_(3)(g) + 3HCl(g), " "DeltaH_(1) N_(2)(g)+3H_(2)(g)rarr 2NH_(3)(g), " "DeltaH_(2) H_(2)(g)+ Cl_(2)(g) rarr 2HCl(g) , " " DeltaH_(3) The heat of formation of NCl_(3) in the terms of DeltaH_(1), DeltaH_(2) "and" DeltaH_(3) is

Match the following {:(,"Column -I",,"Column -II"),((A),H_(3)PO_(3),(p),m=2.79" mol/kg"),((B),20 " vol . of "H_(2)O_(2),(q),M=2.31" mol"L^(-1)),((C),"3 M NaCl solution with "d=1.25 g cm^(-3),(r),1.7 " mol "L^(-1)),((D),"Mole fraction of ethanol in" H_(2)O = 0.04 ,(s),"Dibasic "),(,,(t),3.4 N):}

i. H_(2)(g) +CI_(2)(g)rarr 2HCI(g),DeltaH =- x kJ ii. NaCI +H_(2)SO_(4) rarr NaHSO_(4) +HCI, DeltaH =- y kJ iii. 2H_(2)O +2CI_(2) rarr 4HCI +O_(2),DeltaH =- z kJ From the above equations, the value of DeltaH of HCI is

Calculate in kJ for the following reaction : C(g) + O_(2)(g) rarr CO_(2)(g) Given that, H_(2)O(g) + C(g) + H_(2)(g) , Delta H = +131 kJ CO(g) + 1/2 O_(2)(g) rarr CO_(2)(g), " " Delta H = -242 kJ H_(2)(g) + 1/2 O_(2)(g) rarr H_(2)O(g), " "DeltaH = -242 kJ

If 2AI(s) +1(1)/(2) O_(2)(g) rarr AI_(2)O_(3)(s), DeltaH =- 1667.8 kJ H_(2)(g) +(1)/(2)O_(2)(g) rarr H_(2)O(l), DeltaH =- 285.9 kJ Calculate DeltaH for the reaction AI_(2)O_(3)(s) rarr 2AI(s) +1(1)/(2)O_(2)(g)