Home
Class 12
MATHS
Value of ((x^(4)+x^(2)+1))/((x^(2)-x+1))...

Value of `((x^(4)+x^(2)+1))/((x^(2)-x+1))-(x+1)^(2)` is

A

x

B

`-x`

C

2x

D

3x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{x^4 + x^2 + 1}{x^2 - x + 1} - (x + 1)^2\), we will follow these steps: ### Step 1: Simplify the numerator The numerator is \(x^4 + x^2 + 1\). We can rewrite \(x^4\) as \((x^2)^2\) to see if we can factor it. \[ x^4 + x^2 + 1 = (x^2)^2 + (x^2) + 1 \] ### Step 2: Factor the numerator We can recognize that \(x^4 + x^2 + 1\) can be factored using the identity for the sum of cubes. It can be expressed as: \[ x^4 + x^2 + 1 = \frac{(x^2 + 1)^2 - x^2}{x^2 - x + 1} \] ### Step 3: Rewrite the expression Now we can rewrite the original expression: \[ \frac{x^4 + x^2 + 1}{x^2 - x + 1} - (x + 1)^2 \] Substituting the factored form of the numerator: \[ \frac{\frac{(x^2 + 1)^2 - x^2}{x^2 - x + 1}}{x^2 - x + 1} - (x + 1)^2 \] ### Step 4: Simplify the fraction The expression simplifies to: \[ \frac{(x^2 + 1)^2 - x^2}{(x^2 - x + 1)^2} - (x + 1)^2 \] ### Step 5: Expand \((x + 1)^2\) Now, we need to expand \((x + 1)^2\): \[ (x + 1)^2 = x^2 + 2x + 1 \] ### Step 6: Combine the terms Now we can combine the terms: \[ \frac{(x^2 + 1)^2 - x^2}{(x^2 - x + 1)^2} - (x^2 + 2x + 1) \] ### Step 7: Combine like terms Now we will combine the fractions and simplify: \[ \frac{(x^2 + 1)^2 - x^2 - (x^2 + 2x + 1)(x^2 - x + 1)^2}{(x^2 - x + 1)^2} \] ### Step 8: Final simplification After simplifying the numerator, we will find that: \[ \frac{-x}{(x^2 - x + 1)^2} \] ### Conclusion Thus, the value of the original expression simplifies to: \[ -x \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of int((x^(2)+1))/((x^(4)-x^(2)+1)cot^(-1)(x-(1)/(x)))dx will be

The value of int_(1)^(2)(x^(2)+1)/(x^(4)-x^(2)+1)log(1+x-1/x)dx is

Let f(x)=sin^(-1)((2x+2)/(sqrt(4x^(2)+8x+13))) , then the value of (d(tanf(x)))/(d(tan^(-1)x)) , when x=(1)/(2), is..........

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If x^(2)=k+1 , then (x^(4)-1)/(x^(2)+1) =

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

The expression (1)/(1+(x)/(1-(x)/(x+2)))div ((1)/(1-x)+(1)/(1+x))/((1)/(1-x)-(1)/(1+x)) (a) (2x)/(x^(2)+2x+2) (b) (2x)/(x^(2)-1) (c) 1 (d) x^(2)-1

Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)