Home
Class 12
MATHS
Let x =(log(sin 30^(@))cos 30^(@))(log(c...

Let `x =(log_(sin 30^(@))cos 30^(@))(log_(cos30^(@))cot30^(@)) (log_(cot 30^(@))coses 30^(@))` and `y = 3^(log_(cot 30^(@))(|x|+3))` then value of `y` is equal to-

A

4

B

16

C

12

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will calculate the value of \( x \) and then use it to find \( y \). ### Step 1: Calculate \( x \) The expression for \( x \) is given as: \[ x = \log_{\sin 30^\circ} \cos 30^\circ \cdot \log_{\cos 30^\circ} \cot 30^\circ \cdot \log_{\cot 30^\circ} \csc 30^\circ \] Using the known values: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) - \( \cot 30^\circ = \frac{1}{\tan 30^\circ} = \sqrt{3} \) - \( \csc 30^\circ = \frac{1}{\sin 30^\circ} = 2 \) We can rewrite \( x \) using the change of base formula: \[ \log_a b = \frac{\log_c b}{\log_c a} \] Thus, we can express each logarithm in terms of natural logarithm (or any common base): 1. \( \log_{\sin 30^\circ} \cos 30^\circ = \frac{\log \cos 30^\circ}{\log \sin 30^\circ} \) 2. \( \log_{\cos 30^\circ} \cot 30^\circ = \frac{\log \cot 30^\circ}{\log \cos 30^\circ} \) 3. \( \log_{\cot 30^\circ} \csc 30^\circ = \frac{\log \csc 30^\circ}{\log \cot 30^\circ} \) Substituting these into \( x \): \[ x = \frac{\log \cos 30^\circ}{\log \sin 30^\circ} \cdot \frac{\log \cot 30^\circ}{\log \cos 30^\circ} \cdot \frac{\log \csc 30^\circ}{\log \cot 30^\circ} \] ### Step 2: Simplify \( x \) Notice that the terms in the product will cancel out: \[ x = \frac{\log \csc 30^\circ}{\log \sin 30^\circ} \] Now, substituting the known values: \[ \csc 30^\circ = 2 \quad \text{and} \quad \sin 30^\circ = \frac{1}{2} \] Thus, \[ x = \frac{\log 2}{\log \left(\frac{1}{2}\right)} = \frac{\log 2}{-\log 2} = -1 \] ### Step 3: Calculate \( y \) Now substituting \( x \) into the expression for \( y \): \[ y = 3^{\log_{\cot 30^\circ} (|x| + 3)} \] Since \( |x| = 1 \): \[ y = 3^{\log_{\cot 30^\circ} (1 + 3)} = 3^{\log_{\cot 30^\circ} 4} \] Using the change of base formula again: \[ y = 3^{\frac{\log 4}{\log \cot 30^\circ}} \] Since \( \cot 30^\circ = \sqrt{3} \): \[ y = 3^{\frac{\log 4}{\log \sqrt{3}}} = 3^{\frac{\log 4}{\frac{1}{2} \log 3}} = 3^{\frac{2 \log 4}{\log 3}} = 4^{\frac{2}{\log 3}} = 4^{\log_3 4} = 3^2 = 9 \] ### Final Answer: Thus, the value of \( y \) is: \[ \boxed{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

Find the value of : (sin30^(@)-sin90^(@)+2cos0^(@))/(tan30^(@) times tan60^(@))

Find the value of sin60^(@)cos30^(@)+cos60^(@)sin30^(@) .

Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@))-(5sin90^(@))/(2cos0^(@))

Find the value of : " "(sin30^(@)-sin90^(@)+2cos0^(@))/(tan30^(@) times tan60^(@))

Evaluate cos45^(@)cos30^(@)+sin45^(@)sin30^(@) .

The valiue of sin60^(@) cos 30^(@) + sin 30^(@)cos 60^(@) is ______.

cos(30^circ) is equal to

Find the value of : sin30^(@)cos30^(@)

Find the value of : sin30^(@)cos30^(@)