Home
Class 12
MATHS
If a = Sigma(n=0)^(oo) x^(n), b = Sigma...

If a `= Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1`, then -

A

`abc = a + b + c`

B

`ab + bc = ac + b`

C

`ac + bc + b`

D

`ab + ac = bc + a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sums \( a \), \( b \), and \( c \) given by: \[ a = \sum_{n=0}^{\infty} x^n, \quad b = \sum_{n=0}^{\infty} y^n, \quad c = \sum_{n=0}^{\infty} (xy)^n \] where \( |x| < 1 \) and \( |y| < 1 \). ### Step 1: Evaluate \( a \) The series \( a \) is a geometric series with first term \( 1 \) (when \( n=0 \)) and common ratio \( x \). The sum of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. Therefore, we have: \[ a = \frac{1}{1 - x} \] ### Step 2: Evaluate \( b \) Similarly, for \( b \): \[ b = \sum_{n=0}^{\infty} y^n \] This is also a geometric series with first term \( 1 \) and common ratio \( y \): \[ b = \frac{1}{1 - y} \] ### Step 3: Evaluate \( c \) Now, we evaluate \( c \): \[ c = \sum_{n=0}^{\infty} (xy)^n \] This is again a geometric series with first term \( 1 \) and common ratio \( xy \): \[ c = \frac{1}{1 - xy} \] ### Step 4: Relate \( a \), \( b \), and \( c \) From the results we have: 1. \( a = \frac{1}{1 - x} \) 2. \( b = \frac{1}{1 - y} \) 3. \( c = \frac{1}{1 - xy} \) We can express \( x \) and \( y \) in terms of \( a \) and \( b \): \[ 1 - x = \frac{1}{a} \implies x = 1 - \frac{1}{a} \] \[ 1 - y = \frac{1}{b} \implies y = 1 - \frac{1}{b} \] ### Step 5: Substitute \( x \) and \( y \) into the expression for \( c \) Now substituting \( x \) and \( y \) into the expression for \( c \): \[ 1 - xy = 1 - \left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right) \] Expanding this: \[ 1 - xy = 1 - \left(1 - \frac{1}{a} - \frac{1}{b} + \frac{1}{ab}\right) \] \[ = \frac{1}{a} + \frac{1}{b} - \frac{1}{ab} \] ### Step 6: Set up the equation From the expression for \( c \): \[ c = \frac{1}{1 - xy} \] Thus, \[ 1 - xy = \frac{1}{c} \] Equating both expressions for \( 1 - xy \): \[ \frac{1}{c} = \frac{1}{a} + \frac{1}{b} - \frac{1}{ab} \] ### Step 7: Rearranging the equation Multiplying through by \( abc \): \[ ab = b + a - c \] Rearranging gives us: \[ bc + ac = ab + c \] ### Conclusion Thus, we have derived the relationship: \[ bc + ac = ab + c \] This means the correct option is: **Option C is true.**
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-8|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-9|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-6|1 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then

If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

If S=Sigma_(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .

Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to