If a `= Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1`, then -
A
`abc = a + b + c`
B
`ab + bc = ac + b`
C
`ac + bc + b`
D
`ab + ac = bc + a`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to evaluate the sums \( a \), \( b \), and \( c \) given by:
\[
a = \sum_{n=0}^{\infty} x^n, \quad b = \sum_{n=0}^{\infty} y^n, \quad c = \sum_{n=0}^{\infty} (xy)^n
\]
where \( |x| < 1 \) and \( |y| < 1 \).
### Step 1: Evaluate \( a \)
The series \( a \) is a geometric series with first term \( 1 \) (when \( n=0 \)) and common ratio \( x \). The sum of an infinite geometric series is given by the formula:
\[
S = \frac{a}{1 - r}
\]
where \( a \) is the first term and \( r \) is the common ratio. Therefore, we have:
\[
a = \frac{1}{1 - x}
\]
### Step 2: Evaluate \( b \)
Similarly, for \( b \):
\[
b = \sum_{n=0}^{\infty} y^n
\]
This is also a geometric series with first term \( 1 \) and common ratio \( y \):
\[
b = \frac{1}{1 - y}
\]
### Step 3: Evaluate \( c \)
Now, we evaluate \( c \):
\[
c = \sum_{n=0}^{\infty} (xy)^n
\]
This is again a geometric series with first term \( 1 \) and common ratio \( xy \):
\[
c = \frac{1}{1 - xy}
\]
### Step 4: Relate \( a \), \( b \), and \( c \)
From the results we have:
1. \( a = \frac{1}{1 - x} \)
2. \( b = \frac{1}{1 - y} \)
3. \( c = \frac{1}{1 - xy} \)
We can express \( x \) and \( y \) in terms of \( a \) and \( b \):
\[
1 - x = \frac{1}{a} \implies x = 1 - \frac{1}{a}
\]
\[
1 - y = \frac{1}{b} \implies y = 1 - \frac{1}{b}
\]
### Step 5: Substitute \( x \) and \( y \) into the expression for \( c \)
Now substituting \( x \) and \( y \) into the expression for \( c \):
\[
1 - xy = 1 - \left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right)
\]
Expanding this:
\[
1 - xy = 1 - \left(1 - \frac{1}{a} - \frac{1}{b} + \frac{1}{ab}\right)
\]
\[
= \frac{1}{a} + \frac{1}{b} - \frac{1}{ab}
\]
### Step 6: Set up the equation
From the expression for \( c \):
\[
c = \frac{1}{1 - xy}
\]
Thus,
\[
1 - xy = \frac{1}{c}
\]
Equating both expressions for \( 1 - xy \):
\[
\frac{1}{c} = \frac{1}{a} + \frac{1}{b} - \frac{1}{ab}
\]
### Step 7: Rearranging the equation
Multiplying through by \( abc \):
\[
ab = b + a - c
\]
Rearranging gives us:
\[
bc + ac = ab + c
\]
### Conclusion
Thus, we have derived the relationship:
\[
bc + ac = ab + c
\]
This means the correct option is:
**Option C is true.**
Topper's Solved these Questions
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-8|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-9|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-6|1 Videos
RACE
ALLEN|Exercise Race 21|14 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos
Similar Questions
Explore conceptually related problems
If x=sum_(n=0)^(oo) a^(n),y=sum_(n=0)^(oo)b^(n),z=sum_(n=0)^(oo)(ab)^(n) , where a,blt1 , then
If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is
If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals
Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1
sum_(n=0)^(oo) ((log_ex)^n)/(n!)
If S=Sigma_(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals
Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to
If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .
Find the sum Sigma_(j=1)^(n) Sigma_(i=1)^(n) I xx 3^j
If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to