If `a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1`, then minimum value of `(1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2))` is equal to
A
`3^(n + 1)`
B
`3^(n)`
C
`3^(n - 1)`
D
none of these
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the minimum value of the expression:
\[
(1 + a_1 + a_1^2)(1 + a_2 + a_2^2)(1 + a_3 + a_3^2) \ldots (1 + a_n + a_n^2)
\]
given that \(a_1, a_2, a_3, \ldots, a_n \in \mathbb{R}^+\) and \(a_1 \cdot a_2 \cdot a_3 \cdots a_n = 1\).
### Step 1: Analyze the expression
We notice that each term in the product can be expressed as:
\[
1 + a_i + a_i^2
\]
### Step 2: Use AM-GM Inequality
To minimize \(1 + a_i + a_i^2\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. According to AM-GM:
\[
\frac{1 + a_i + a_i^2}{3} \geq \sqrt[3]{1 \cdot a_i \cdot a_i^2}
\]
This simplifies to:
\[
\frac{1 + a_i + a_i^2}{3} \geq \sqrt[3]{a_i^3} = a_i
\]
Thus, we can rearrange this to find:
\[
1 + a_i + a_i^2 \geq 3a_i
\]
### Step 3: Substitute for \(a_i\)
Since we have the constraint \(a_1 \cdot a_2 \cdots a_n = 1\), we can set \(a_i = x\) for all \(i\) (i.e., \(a_1 = a_2 = \ldots = a_n = x\)). Therefore, we have:
\[
x^n = 1 \implies x = 1
\]
### Step 4: Calculate the minimum value
Substituting \(x = 1\) back into the expression:
\[
1 + 1 + 1^2 = 1 + 1 + 1 = 3
\]
Thus, the product becomes:
\[
(1 + 1 + 1^2)^n = 3^n
\]
### Conclusion
The minimum value of the expression is:
\[
\boxed{3^n}
\]
Topper's Solved these Questions
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-15|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-16|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-13|1 Videos
RACE
ALLEN|Exercise Race 21|14 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos
Similar Questions
Explore conceptually related problems
If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is
It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)
If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =
Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to
If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .
If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to
If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is