Home
Class 12
MATHS
If a(1), a(2), a(3).... A(n) in R^(+) an...

If `a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1`, then minimum value of `(1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2))` is equal to

A

`3^(n + 1)`

B

`3^(n)`

C

`3^(n - 1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression: \[ (1 + a_1 + a_1^2)(1 + a_2 + a_2^2)(1 + a_3 + a_3^2) \ldots (1 + a_n + a_n^2) \] given that \(a_1, a_2, a_3, \ldots, a_n \in \mathbb{R}^+\) and \(a_1 \cdot a_2 \cdot a_3 \cdots a_n = 1\). ### Step 1: Analyze the expression We notice that each term in the product can be expressed as: \[ 1 + a_i + a_i^2 \] ### Step 2: Use AM-GM Inequality To minimize \(1 + a_i + a_i^2\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. According to AM-GM: \[ \frac{1 + a_i + a_i^2}{3} \geq \sqrt[3]{1 \cdot a_i \cdot a_i^2} \] This simplifies to: \[ \frac{1 + a_i + a_i^2}{3} \geq \sqrt[3]{a_i^3} = a_i \] Thus, we can rearrange this to find: \[ 1 + a_i + a_i^2 \geq 3a_i \] ### Step 3: Substitute for \(a_i\) Since we have the constraint \(a_1 \cdot a_2 \cdots a_n = 1\), we can set \(a_i = x\) for all \(i\) (i.e., \(a_1 = a_2 = \ldots = a_n = x\)). Therefore, we have: \[ x^n = 1 \implies x = 1 \] ### Step 4: Calculate the minimum value Substituting \(x = 1\) back into the expression: \[ 1 + 1 + 1^2 = 1 + 1 + 1 = 3 \] Thus, the product becomes: \[ (1 + 1 + 1^2)^n = 3^n \] ### Conclusion The minimum value of the expression is: \[ \boxed{3^n} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-15|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-16|1 Videos
  • SEQUENCE AND PROGRESSION

    ALLEN|Exercise Exercise O-13|1 Videos
  • RACE

    ALLEN|Exercise Race 21|14 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos

Similar Questions

Explore conceptually related problems

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

It a_(1) , a_(2) , a_(3) a_(4) be in G.P. then prove that (a_(2)-a_(3))^(2) + (a_(3) - a_(1))^(2) + (a_(4) -a_(2))^(2) = (a_(1)-a_(4))^(2)

If a_(1),a_(2),a_(3),………. are in A.P. such that a_(1) + a_(5) + a_(10) + a_(15) + a_(20) + a_(24) = 225, then a_(1) + a_(2) + a_(3) + …… a_(23) + a_(24) =

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If A_(1), A_(2),..,A_(n) are any n events, then

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to