the sum`3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+.......` upto 11 terms
A
`(11)/(4)`
B
`(60)/(11)`
C
`(7)/(2)`
D
`(11)/(2)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the series \( S = \frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \ldots \) up to 11 terms, we can follow these steps:
### Step 1: Identify the General Term
The general term \( T_n \) of the series can be expressed as:
\[
T_n = \frac{2n + 1}{1^2 + 2^2 + 3^2 + \ldots + n^2}
\]
where \( n \) is the term number.
### Step 2: Sum of Squares Formula
The sum of the squares of the first \( n \) natural numbers is given by:
\[
1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
Thus, we can rewrite the general term:
\[
T_n = \frac{2n + 1}{\frac{n(n + 1)(2n + 1)}{6}} = \frac{6(2n + 1)}{n(n + 1)(2n + 1)}
\]
This simplifies to:
\[
T_n = \frac{6}{n(n + 1)}
\]
### Step 3: Partial Fraction Decomposition
Next, we can decompose \( T_n \):
\[
T_n = \frac{6}{n(n + 1)} = 6 \left( \frac{1}{n} - \frac{1}{n + 1} \right)
\]
### Step 4: Write the Sum of the Series
Now, we can write the sum \( S \) of the first 11 terms:
\[
S = \sum_{n=1}^{11} T_n = \sum_{n=1}^{11} 6 \left( \frac{1}{n} - \frac{1}{n + 1} \right)
\]
This is a telescoping series.
### Step 5: Evaluate the Sum
When we expand the sum, we have:
\[
S = 6 \left( \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{11} - \frac{1}{12} \right) \right)
\]
Most terms cancel out, leaving us with:
\[
S = 6 \left( 1 - \frac{1}{12} \right) = 6 \left( \frac{12 - 1}{12} \right) = 6 \left( \frac{11}{12} \right) = \frac{66}{12} = \frac{11}{2}
\]
### Final Answer
Thus, the sum of the series up to 11 terms is:
\[
\boxed{\frac{11}{2}}
\]
Topper's Solved these Questions
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-20|1 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise S-1|16 Videos
SEQUENCE AND PROGRESSION
ALLEN|Exercise Exercise O-18|1 Videos
RACE
ALLEN|Exercise Race 21|14 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|3 Videos
Similar Questions
Explore conceptually related problems
Sum of first 20 terms of 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) +... upto 20 terms is :
The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to
The sum to 50 terms of the series 3/1^2+5/(1^2+2^2)+7/(1^+2^2+3^2)+….+… is
Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.
Find the sum 1^2+(1^2+2^2)+(1^2+2^2+3^2)+ up to 22nd term.
Find the sum to n terms of the series : 1^2+(1^2+2^2)+(1^2+2^2+3^2)+.......
The sum (3 xx 1^(3))/(1^(2)) + (5 xx (1^(3) + 2^(3)))/(1^(2) + 2^(2)) + (7 xx (1^(3) + 2^(3) + 3^(3)))/(1^(2) +2^(2) + 3^(2))... upto 10th term is
Find the sum of infinite terms of the series 3/1^2 + 5/(1^2 + 2^2) + 7/(1^2+2^2+3^2) + 9/(1^2+2^2+3^2+4^2)+...
Find the sum 1+(1+2)+(1+2+2^(2))+(1+2+2^(2)+2^(3))+ …. To n terms.
The sum of the series (2)^2+2(4)^2+3(6)^2+.... upto 10 terms is