Home
Class 12
PHYSICS
The component of vec(A)=hati+hatj+5hatk ...

The component of `vec(A)=hati+hatj+5hatk` perpendicular to `vec(B)=3hati+4hatj` is

A

`-(4)/(25)hati+(3)/(25)hatj+5hatk`

B

`-(8)/(25)hati-(6)/(25)hatj+5hatk`

C

`(4)/(25)hati-(3)/(25)hatj+5hatk`

D

`+(8)/(25)hati-(6)/(25)hatj+5hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the component of vector \( \vec{A} = \hat{i} + \hat{j} + 5\hat{k} \) that is perpendicular to vector \( \vec{B} = 3\hat{i} + 4\hat{j} \), we can follow these steps: ### Step 1: Calculate the dot product of \( \vec{A} \) and \( \vec{B} \) The dot product \( \vec{A} \cdot \vec{B} \) is calculated as follows: \[ \vec{A} \cdot \vec{B} = (1)(3) + (1)(4) + (5)(0) = 3 + 4 + 0 = 7 \] ### Step 2: Calculate the magnitude of vector \( \vec{B} \) The magnitude of \( \vec{B} \) is given by: \[ |\vec{B}| = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 3: Calculate the parallel component of \( \vec{A} \) along \( \vec{B} \) The formula for the magnitude of the parallel component of \( \vec{A} \) along \( \vec{B} \) is: \[ |\vec{A}_{\parallel}| = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} = \frac{7}{5} \] ### Step 4: Find the unit vector in the direction of \( \vec{B} \) The unit vector \( \hat{b} \) in the direction of \( \vec{B} \) is: \[ \hat{b} = \frac{\vec{B}}{|\vec{B}|} = \frac{3\hat{i} + 4\hat{j}}{5} = \frac{3}{5}\hat{i} + \frac{4}{5}\hat{j} \] ### Step 5: Calculate the parallel component vector of \( \vec{A} \) Now we can find the parallel component vector \( \vec{A}_{\parallel} \): \[ \vec{A}_{\parallel} = |\vec{A}_{\parallel}| \hat{b} = \frac{7}{5} \left( \frac{3}{5}\hat{i} + \frac{4}{5}\hat{j} \right) = \frac{21}{25}\hat{i} + \frac{28}{25}\hat{j} \] ### Step 6: Calculate the perpendicular component of \( \vec{A} \) The perpendicular component \( \vec{A}_{\perpendicular} \) can be found using the formula: \[ \vec{A}_{\perpendicular} = \vec{A} - \vec{A}_{\parallel} \] Substituting the values we have: \[ \vec{A}_{\perpendicular} = \left( \hat{i} + \hat{j} + 5\hat{k} \right) - \left( \frac{21}{25}\hat{i} + \frac{28}{25}\hat{j} \right) \] ### Step 7: Simplify the expression Now we simplify the expression: \[ \vec{A}_{\perpendicular} = \left( 1 - \frac{21}{25} \right) \hat{i} + \left( 1 - \frac{28}{25} \right) \hat{j} + 5\hat{k} \] Calculating each component: \[ 1 - \frac{21}{25} = \frac{25 - 21}{25} = \frac{4}{25} \] \[ 1 - \frac{28}{25} = \frac{25 - 28}{25} = -\frac{3}{25} \] Thus, we have: \[ \vec{A}_{\perpendicular} = \frac{4}{25}\hat{i} - \frac{3}{25}\hat{j} + 5\hat{k} \] ### Final Answer The component of \( \vec{A} \) that is perpendicular to \( \vec{B} \) is: \[ \vec{A}_{\perpendicular} = \frac{4}{25}\hat{i} - \frac{3}{25}\hat{j} + 5\hat{k} \] ---

To find the component of vector \( \vec{A} = \hat{i} + \hat{j} + 5\hat{k} \) that is perpendicular to vector \( \vec{B} = 3\hat{i} + 4\hat{j} \), we can follow these steps: ### Step 1: Calculate the dot product of \( \vec{A} \) and \( \vec{B} \) The dot product \( \vec{A} \cdot \vec{B} \) is calculated as follows: \[ \vec{A} \cdot \vec{B} = (1)(3) + (1)(4) + (5)(0) = 3 + 4 + 0 = 7 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-1)|20 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (S-2)|7 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos
  • TEST PAPERS

    ALLEN|Exercise MATHS|14 Videos
  • WAVE OPTICS

    ALLEN|Exercise Exercise 2 (Previous Year Questions)|7 Videos

Similar Questions

Explore conceptually related problems

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

Determine that vector which when added to the resultant of vec(A)=3hati-5hatj+7hatk and vec(B)=2hati+4hatj-3hatk gives unit vector along y- direction.

The angles between the two vectors vecA=3hati+4hatj+5hatk and vecB=3hati+4hatj-5hatk will be

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

Statement1: A component of vector vecb = 4hati + 2hatj + 3hatk in the direction perpendicular to the direction of vector veca = hati + hatj +hatk is hati - hatj Statement 2: A component of vector in the direction of veca = hati + hatj + hatk is 2hati + 2hatj + 2hatk

ABCD is a parallelogram with vec(AC) = hati - 2hatj + hatk and vec(BD) = -hati + 2hatj - 5hatk . Area of this parallelogram is equal to:

The angle between the two vectors A=3 hati+4hatj+5hatk and B=3hati+4hatj-5hatk is

Find the scalar components of a unit vector which is perpendicular to each of the vectors hati+2hatj-hatk and 3hati-hatj+2hatk .

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk