Home
Class 11
MATHS
If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n...

If `(1+x)^n=C_(0)+C_(1)x+C_(2)x^2+….+C_(n)x^n` then prove that `(SigmaSigma)_(0 le i lt j le n ) C_(i)C_(j)^2=(n-1)^(2n)C_(n)+2^(2n)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+….+C_(n).x^(n). then prove that (i) C_(0)+2C_(1)+3C_(2)+…+(n-1)C_(n)=(n+2).2^(n-1) (ii)C_(0)+3C_(1)+5C_(2)+...+(2n+1)C_(n)=(n+1).2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n then the value of sumsum_(0lt=iltjlt=n)C_iC_j is (A) 2^(2n-1)- .^(2n)C_(n/2) (B) .^(2n)C_n (C) 2^n (D) none of these

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find the term independent of x in the expansion off the following ex...

    Text Solution

    |

  2. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  3. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  4. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n-1) (ii) C(0)+(C(1)...

    Text Solution

    |

  5. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2)x^(2) + C(3) x^(3)+ …+ C(n) x^(n...

    Text Solution

    |

  7. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  8. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  9. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  10. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  11. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  12. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  13. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  14. If (1+x+x^2)^n = underset(2n)overset(r=0)Sigma a (r)x^r then prove th...

    Text Solution

    |

  15. If f ( x ) = [ x ] , where [ ⋅ ] denotes greatest integral function...

    Text Solution

    |

  16. Find the last three digits in 11^(50)

    Text Solution

    |

  17. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  18. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  19. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |

  20. If (1+x+x^2)^n = Sigma(2n)^(r=0) a (r)x^r then prove that (a) a(r...

    Text Solution

    |