Home
Class 11
MATHS
Expand (3x^2- x/2)^5...

Expand `(3x^2- x/2)^5`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3x^2 - \frac{x}{2})^5\), we will use the Binomial Theorem, which states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \(a = 3x^2\), \(b = -\frac{x}{2}\), and \(n = 5\). ### Step-by-Step Solution: 1. **Identify \(a\), \(b\), and \(n\)**: - \(a = 3x^2\) - \(b = -\frac{x}{2}\) - \(n = 5\) 2. **Apply the Binomial Theorem**: \[ (3x^2 - \frac{x}{2})^5 = \sum_{k=0}^{5} \binom{5}{k} (3x^2)^{5-k} \left(-\frac{x}{2}\right)^k \] 3. **Calculate each term in the expansion**: - For \(k = 0\): \[ \binom{5}{0} (3x^2)^5 \left(-\frac{x}{2}\right)^0 = 1 \cdot (3x^2)^5 \cdot 1 = 243x^{10} \] - For \(k = 1\): \[ \binom{5}{1} (3x^2)^4 \left(-\frac{x}{2}\right)^1 = 5 \cdot (3^4)(x^8) \cdot \left(-\frac{x}{2}\right) = -5 \cdot 81x^8 \cdot \frac{x}{2} = -\frac{405}{2} x^9 \] - For \(k = 2\): \[ \binom{5}{2} (3x^2)^3 \left(-\frac{x}{2}\right)^2 = 10 \cdot (3^3)(x^6) \cdot \left(\frac{x^2}{4}\right) = 10 \cdot 27x^6 \cdot \frac{x^2}{4} = \frac{270}{4} x^8 = \frac{135}{2} x^8 \] - For \(k = 3\): \[ \binom{5}{3} (3x^2)^2 \left(-\frac{x}{2}\right)^3 = 10 \cdot (3^2)(x^4) \cdot \left(-\frac{x^3}{8}\right) = -10 \cdot 9x^4 \cdot \frac{x^3}{8} = -\frac{90}{8} x^7 = -\frac{45}{4} x^7 \] - For \(k = 4\): \[ \binom{5}{4} (3x^2)^1 \left(-\frac{x}{2}\right)^4 = 5 \cdot (3)(x^2) \cdot \left(\frac{x^4}{16}\right) = 5 \cdot 3x^2 \cdot \frac{x^4}{16} = \frac{15}{16} x^6 \] - For \(k = 5\): \[ \binom{5}{5} (3x^2)^0 \left(-\frac{x}{2}\right)^5 = 1 \cdot 1 \cdot \left(-\frac{x^5}{32}\right) = -\frac{x^5}{32} \] 4. **Combine all the terms**: \[ (3x^2 - \frac{x}{2})^5 = 243x^{10} - \frac{405}{2} x^9 + \frac{135}{2} x^8 - \frac{45}{4} x^7 + \frac{15}{16} x^6 - \frac{x^5}{32} \] ### Final Expanded Form: \[ (3x^2 - \frac{x}{2})^5 = 243x^{10} - \frac{405}{2} x^9 + \frac{135}{2} x^8 - \frac{45}{4} x^7 + \frac{15}{16} x^6 - \frac{x^5}{32} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -2|3 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -3|2 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|5 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Expand (y+x)^2

Expand : (3x - 2y)^3

Expand (1+x)^-2 .

Expand (x^2+2a)^5 by binomial theorem.

Expand : (i) (3x + 2)^3

Expand (3x-2y)^(4) .

Expand: (x+y- z)^(2)

Expand: (5x-3y-2)^(2)

Expand (i) (x/3+3y/2)^(5) ,(ii) (x^(2)+2/x)^(4) using pascle's triangle.

Expand : (2x- y + 2)^(3)