Home
Class 11
MATHS
C0+C1+C2+.........+C(N-1)+CN=...

`C_0+C_1+C_2+.........+C_(N-1)+C_N=`

A

`2^(n-1)`

B

`""^(2n C_n)`

C

`2^(n)`

D

`2^(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( C_0 + C_1 + C_2 + \ldots + C_N \), where \( C_k = \binom{N}{k} \) (the binomial coefficients), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understand the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] where \( \binom{n}{k} \) is the binomial coefficient. 2. **Set \( x = 1 \) and \( y = 1 \)**: To find the sum of the binomial coefficients, we can substitute \( x = 1 \) and \( y = 1 \): \[ (1 + 1)^N = \sum_{k=0}^{N} \binom{N}{k} 1^{N-k} 1^k \] 3. **Simplify the Left Side**: The left side simplifies to: \[ 2^N \] 4. **Simplify the Right Side**: The right side becomes: \[ \sum_{k=0}^{N} \binom{N}{k} = \binom{N}{0} + \binom{N}{1} + \binom{N}{2} + \ldots + \binom{N}{N} \] 5. **Equate Both Sides**: Therefore, we have: \[ 2^N = \binom{N}{0} + \binom{N}{1} + \binom{N}{2} + \ldots + \binom{N}{N} \] 6. **Conclusion**: Thus, the value of \( C_0 + C_1 + C_2 + \ldots + C_N \) is: \[ C_0 + C_1 + C_2 + \ldots + C_N = 2^N \] ### Final Answer: \[ C_0 + C_1 + C_2 + \ldots + C_N = 2^N \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -5|1 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -3|2 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

if S_n = C_0C_1 + C_1C_2 +...+ C_(n-1)C_n and S_(n+1)/S_n = 15/4 then n is

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

Prove that C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n