Home
Class 11
MATHS
The value of cos(pi/2^(2)).cos(pi/2^(3))...

The value of `cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(10))` is

A

`1/256`

B

`1/2`

C

`1/512`

D

`1/1024`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \cdots \cos\left(\frac{\pi}{2^{10}}\right) \cdot \sin\left(\frac{\pi}{2^{10}}\right) \), we can use a trigonometric identity. ### Step-by-step Solution: 1. **Identify the Pattern**: We have a product of cosines of the form \( \cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \cdots \cos\left(\frac{\pi}{2^{10}}\right) \) and a sine term \( \sin\left(\frac{\pi}{2^{10}}\right) \). 2. **Use the Trigonometric Identity**: The identity we will use is: \[ \cos \theta \cdot \cos 2\theta \cdot \cos 4\theta \cdots \cos(2^{n-1}\theta) = \frac{\sin(2^n \theta)}{2^n \sin \theta} \] Here, we can let \( \theta = \frac{\pi}{2^{10}} \). 3. **Determine \( n \)**: In our case, we need to find \( n \) such that the last cosine term is \( \cos\left(\frac{\pi}{2^{10}}\right) \). The terms are \( \cos\left(\frac{\pi}{2^2}\right), \cos\left(\frac{\pi}{2^3}\right), \ldots, \cos\left(\frac{\pi}{2^{10}}\right) \), which gives us \( n = 10 - 2 + 1 = 9 \). 4. **Apply the Identity**: Now, substituting \( n = 9 \) and \( \theta = \frac{\pi}{2^{10}} \) into the identity, we get: \[ \cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \cdots \cos\left(\frac{\pi}{2^{10}}\right) = \frac{\sin\left(2^9 \cdot \frac{\pi}{2^{10}}\right)}{2^9 \sin\left(\frac{\pi}{2^{10}}\right)} \] 5. **Simplify the Sine Term**: Calculate \( 2^9 \cdot \frac{\pi}{2^{10}} = \frac{\pi}{2} \). Thus, we have: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] Therefore, the expression simplifies to: \[ \frac{1}{2^9 \sin\left(\frac{\pi}{2^{10}}\right)} \] 6. **Calculate \( \sin\left(\frac{\pi}{2^{10}}\right) \)**: Since \( \sin\left(\frac{\pi}{2^{10}}\right) \) is a small angle, we can approximate it as: \[ \sin\left(\frac{\pi}{2^{10}}\right) \approx \frac{\pi}{2^{10}} \] 7. **Final Calculation**: Substituting this back, we get: \[ \frac{1}{2^9 \cdot \frac{\pi}{2^{10}}} = \frac{2^{10}}{2^9 \pi} = \frac{2}{\pi} \] 8. **Final Result**: Thus, the value of the original expression is: \[ \frac{2}{\pi} \]

To find the value of the expression \( \cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \cdots \cos\left(\frac{\pi}{2^{10}}\right) \cdot \sin\left(\frac{\pi}{2^{10}}\right) \), we can use a trigonometric identity. ### Step-by-step Solution: 1. **Identify the Pattern**: We have a product of cosines of the form \( \cos\left(\frac{\pi}{2^2}\right) \cdot \cos\left(\frac{\pi}{2^3}\right) \cdots \cos\left(\frac{\pi}{2^{10}}\right) \) and a sine term \( \sin\left(\frac{\pi}{2^{10}}\right) \). 2. **Use the Trigonometric Identity**: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JA)|16 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

the value of cos((pi)/(2^2)) cos((pi)/(2^3)) cos((pi)/(2^4)) ..... cos((pi)/(2^(10))) sin((pi)/(2^(10))) is (a) (1)/(1024) (b) (1)/(512) (c) (1)/(256) (d) (1)/(128)

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

Knowledge Check

  • The value of cos(pi+x)cos(pi+x)sec^(2)x is

    A
    0
    B
    1
    C
    `-1`
    D
    Not defined
  • Similar Questions

    Explore conceptually related problems

    The value of cos^(-1)(cos'(3pi)/(2)) is

    sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

    Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

    The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

    Find the value of expression (cos(pi/2)+isin(pi/2))(cos(pi/(2^2))+isin(pi/(2^2))).......oo

    Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

    Find the value of expression (cospi/2+i sin(pi/2))(cos(pi/(2^2))+i sin(pi/(2^2)))......oo