Home
Class 11
PHYSICS
Evaluate the following integrals (i) ...

Evaluate the following integrals
(i) `int_(R)^(oo)(GMm)/(x^(2))dx`
(ii) `int_(r_(1))^(r_(2)) -k(q_1q_2)/(x^(2))dx`
(iii) `int_(u)^(v) Mv dv`
(iv) `int_(0)^(oo) x^(-1//2) dx`
(v) `int_(0)^(pi//2) sinx dx `
(vi) `int_(0)^(pi//2) cosx dx`
(vii) `int_(-pi//2)^(pi//2) cos x dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given integrals step by step. ### (i) Evaluate `∫_(R)^(∞) (GMm)/(x^2) dx` 1. **Identify constants**: Here, \( GMm \) is a constant. 2. **Factor out the constant**: \[ \int_{R}^{\infty} \frac{GMm}{x^2} dx = GMm \int_{R}^{\infty} x^{-2} dx \] 3. **Integrate**: The integral of \( x^{-2} \) is: \[ \int x^{-2} dx = -\frac{1}{x} + C \] 4. **Apply limits**: \[ = GMm \left[-\frac{1}{x}\right]_{R}^{\infty} = GMm \left(0 + \frac{1}{R}\right) = \frac{GMm}{R} \] **Final answer**: \( \frac{GMm}{R} \) --- ### (ii) Evaluate `∫_(r1)^(r2) -k(q1q2)/(x^2) dx` 1. **Identify constants**: Here, \( -k(q_1q_2) \) is a constant. 2. **Factor out the constant**: \[ -k(q_1q_2) \int_{r_1}^{r_2} x^{-2} dx \] 3. **Integrate**: \[ = -k(q_1q_2) \left[-\frac{1}{x}\right]_{r_1}^{r_2} = -k(q_1q_2) \left(-\frac{1}{r_2} + \frac{1}{r_1}\right) \] 4. **Simplify**: \[ = k(q_1q_2) \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \] **Final answer**: \( k(q_1q_2) \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \) --- ### (iii) Evaluate `∫_(u)^(v) Mv dv` 1. **Identify constants**: Here, \( M \) is a constant. 2. **Factor out the constant**: \[ M \int_{u}^{v} v dv \] 3. **Integrate**: \[ = M \left[\frac{v^2}{2}\right]_{u}^{v} = M \left(\frac{v^2}{2} - \frac{u^2}{2}\right) \] 4. **Simplify**: \[ = \frac{M}{2} (v^2 - u^2) \] **Final answer**: \( \frac{M}{2} (v^2 - u^2) \) --- ### (iv) Evaluate `∫_(0)^(∞) x^(-1/2) dx` 1. **Integrate**: \[ \int x^{-1/2} dx = 2x^{1/2} + C \] 2. **Apply limits**: \[ = \left[2x^{1/2}\right]_{0}^{\infty} = 2(\infty - 0) = \infty \] **Final answer**: \( \infty \) --- ### (v) Evaluate `∫_(0)^(π/2) sin(x) dx` 1. **Integrate**: \[ \int sin(x) dx = -cos(x) + C \] 2. **Apply limits**: \[ = \left[-cos(x)\right]_{0}^{\frac{\pi}{2}} = -cos\left(\frac{\pi}{2}\right) + cos(0) = 0 + 1 = 1 \] **Final answer**: \( 1 \) --- ### (vi) Evaluate `∫_(0)^(π/2) cos(x) dx` 1. **Integrate**: \[ \int cos(x) dx = sin(x) + C \] 2. **Apply limits**: \[ = \left[sin(x)\right]_{0}^{\frac{\pi}{2}} = sin\left(\frac{\pi}{2}\right) - sin(0) = 1 - 0 = 1 \] **Final answer**: \( 1 \) --- ### (vii) Evaluate `∫_(-π/2)^(π/2) cos(x) dx` 1. **Integrate**: \[ \int cos(x) dx = sin(x) + C \] 2. **Apply limits**: \[ = \left[sin(x)\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = sin\left(\frac{\pi}{2}\right) - sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2 \] **Final answer**: \( 2 \) ---

Let's evaluate the given integrals step by step. ### (i) Evaluate `∫_(R)^(∞) (GMm)/(x^2) dx` 1. **Identify constants**: Here, \( GMm \) is a constant. 2. **Factor out the constant**: \[ \int_{R}^{\infty} \frac{GMm}{x^2} dx = GMm \int_{R}^{\infty} x^{-2} dx ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 6|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 7|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 4|1 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) cos 2x dx

int_(0)^(pi//2) x^(2) cos x dx

int_(0)^(pi) [2sin x]dx=

int_(0)^(pi/2) cos^(2) x dx

int_(0)^(pi//2) x sin x cos x dx

Evaluate: int_(0)^(pi//2) cos2x dx

(i) int_(0)^(pi//2) x sin x cos x dx (ii) int_(0)^(pi//6) (2+3x^(2)) cos 3x dx

int_(0)^(pi//2) x sinx cos x dx=?

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

Evaluate the following integral: int_(-pi)^pi(2x(1+sinx))/(1+cos^2dx)dx