Home
Class 11
PHYSICS
Find the directional cosines of vector (...

Find the directional cosines of vector `(5hati+2hatj+6hatk)`. Also write the value of sum of squares of directional cosines of this vector.

Text Solution

AI Generated Solution

The correct Answer is:
To find the directional cosines of the vector \( \vec{A} = 5\hat{i} + 2\hat{j} + 6\hat{k} \), we will follow these steps: ### Step 1: Calculate the Magnitude of the Vector The magnitude \( |\vec{A}| \) of the vector \( \vec{A} \) is given by the formula: \[ |\vec{A}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \] where \( a_x, a_y, a_z \) are the components of the vector along the \( x, y, z \) axes respectively. For our vector: - \( a_x = 5 \) - \( a_y = 2 \) - \( a_z = 6 \) Thus, the magnitude is: \[ |\vec{A}| = \sqrt{5^2 + 2^2 + 6^2} = \sqrt{25 + 4 + 36} = \sqrt{65} \] ### Step 2: Calculate the Directional Cosines The directional cosines \( \cos \alpha, \cos \beta, \cos \gamma \) are defined as: \[ \cos \alpha = \frac{a_x}{|\vec{A}|}, \quad \cos \beta = \frac{a_y}{|\vec{A}|}, \quad \cos \gamma = \frac{a_z}{|\vec{A}|} \] Now we can calculate each directional cosine: 1. **For \( \cos \alpha \)**: \[ \cos \alpha = \frac{5}{\sqrt{65}} \] 2. **For \( \cos \beta \)**: \[ \cos \beta = \frac{2}{\sqrt{65}} \] 3. **For \( \cos \gamma \)**: \[ \cos \gamma = \frac{6}{\sqrt{65}} \] ### Step 3: Sum of Squares of Directional Cosines The sum of the squares of the directional cosines is given by: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma \] Calculating this: \[ \cos^2 \alpha = \left(\frac{5}{\sqrt{65}}\right)^2 = \frac{25}{65} \] \[ \cos^2 \beta = \left(\frac{2}{\sqrt{65}}\right)^2 = \frac{4}{65} \] \[ \cos^2 \gamma = \left(\frac{6}{\sqrt{65}}\right)^2 = \frac{36}{65} \] Now, summing these: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{25}{65} + \frac{4}{65} + \frac{36}{65} = \frac{65}{65} = 1 \] ### Final Answers - The directional cosines are: - \( \cos \alpha = \frac{5}{\sqrt{65}} \) - \( \cos \beta = \frac{2}{\sqrt{65}} \) - \( \cos \gamma = \frac{6}{\sqrt{65}} \) - The sum of squares of the directional cosines is \( 1 \).

To find the directional cosines of the vector \( \vec{A} = 5\hat{i} + 2\hat{j} + 6\hat{k} \), we will follow these steps: ### Step 1: Calculate the Magnitude of the Vector The magnitude \( |\vec{A}| \) of the vector \( \vec{A} \) is given by the formula: \[ |\vec{A}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \] where \( a_x, a_y, a_z \) are the components of the vector along the \( x, y, z \) axes respectively. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 11|5 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 12|4 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 9|4 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Find the directional consines of vector (5hati+2hatj+6hatk) . Also write the value of sum of squares of directional cosines of this vector.

Find the direction cosines of the vector: hati+2hatj+6hatk

Knowledge Check

  • The direction cosines of hati + hatj + hatk are

    A
    `1,1,1`
    B
    `2,2,2`
    C
    `(1)/(sqrt(2)),(1)/(sqrt(2)),(1)/(sqrt(2))`
    D
    `(1)/(sqrt(3)),(1)/(sqrt(3)),(1)/(sqrt(3))`
  • Similar Questions

    Explore conceptually related problems

    Find the direction cosines of the vector 2hati+2hatj-hatk

    Find the direction cosines of the vector hati+2hatj+3hatk .

    The direction cosines of the vector 3hati-4hatj+5hatk are

    The direction cosines of the vector 3hati-4hatj+5hatk are

    The direction cosines of a vector hati+hatj+sqrt(2) hatk are:-

    Find magnitude and direction cosines of the vector, A= (3hati - 4hatj+5hatk).

    The direction cosines of the vector (2 hati + 2 hatj -hatk) are "___________."