Home
Class 11
PHYSICS
If vecA=3hati+4hatj and vecB=6hati+8hatj...

If `vecA=3hati+4hatj` and `vecB=6hati+8hatj` and A and B are the magnitudes of `vecA` and `vecB`, then which of the following is not true?

A

`vecAxx vecB= vec0`

B

`(A)/(B) = (1)/(2)`

C

`vecA*vecB= 48`

D

`A= 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors \(\vec{A}\) and \(\vec{B}\), calculate their magnitudes, and then evaluate the given statements to find out which one is not true. ### Step-by-Step Solution: 1. **Define the Vectors:** \[ \vec{A} = 3\hat{i} + 4\hat{j} \] \[ \vec{B} = 6\hat{i} + 8\hat{j} \] 2. **Calculate the Magnitude of Vector A:** The magnitude of vector \(\vec{A}\) is given by: \[ A = |\vec{A}| = \sqrt{(3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 3. **Calculate the Magnitude of Vector B:** The magnitude of vector \(\vec{B}\) is given by: \[ B = |\vec{B}| = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10 \] 4. **Evaluate the Cross Product \(\vec{A} \times \vec{B}\):** The cross product can be calculated using the determinant of a matrix: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ 6 & 8 & 0 \end{vmatrix} \] \[ = \hat{i}(4 \cdot 0 - 0 \cdot 8) - \hat{j}(3 \cdot 0 - 0 \cdot 6) + \hat{k}(3 \cdot 8 - 4 \cdot 6) \] \[ = 0\hat{i} - 0\hat{j} + (24 - 24)\hat{k} = 0\hat{k} \] Thus, \(\vec{A} \times \vec{B} = \vec{0}\) (zero vector). 5. **Evaluate the Dot Product \(\vec{A} \cdot \vec{B}\):** The dot product is calculated as follows: \[ \vec{A} \cdot \vec{B} = (3\hat{i} + 4\hat{j}) \cdot (6\hat{i} + 8\hat{j}) \] \[ = 3 \cdot 6 + 4 \cdot 8 = 18 + 32 = 50 \] 6. **Analyze the Options:** - Option A: \(\vec{A} \times \vec{B} = \vec{0}\) (True) - Option B: \(\frac{A}{B} = \frac{5}{10} = \frac{1}{2}\) (True) - Option C: \(\vec{A} \cdot \vec{B} = 48\) (False, we found it to be 50) - Option D: \(A = 5\) (True) ### Conclusion: The statement that is **not true** is Option C, which claims that \(\vec{A} \cdot \vec{B} = 48\).

To solve the problem, we need to analyze the vectors \(\vec{A}\) and \(\vec{B}\), calculate their magnitudes, and then evaluate the given statements to find out which one is not true. ### Step-by-Step Solution: 1. **Define the Vectors:** \[ \vec{A} = 3\hat{i} + 4\hat{j} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-II AIPMT/NEET & AIIMS (2006- 2018)|6 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-III CHECK YOUR UNDERSTANDING|15 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise DOT PRODUCT|20 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If vecA=2hati+4hatj and vecB=6hati+8hatj and A and B are the magnitudes of vecA and vecB , then find the value of A and B

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

Knowledge Check

  • If the vectors vecA=2hati+4hatj and vecB=5hati-phatj are parallel to each other, the magnitude of vecB is

    A
    `5sqrt5`
    B
    `10`
    C
    15
    D
    `2sqrt5`
  • Similar Questions

    Explore conceptually related problems

    If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

    If vecA=3hati-4hatj and vecB=- hati- 4hatj , calculate the direction of vecA+vecB

    If vecA = 3hati - 4hatj and vecB = -hati - 4hatj , calculate the direction of vecA- vecB .

    If vecA=2hati + 3hatj and vecB= 5hati + 7hatj , then the vector having the magnitude of vecA and direction of vecB would be

    vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk) , find the scalar product vecA and vecB

    If vecA=2hati-2hatj-hatk and vecB=hati+hatj , then : (a) Find angle between vecA and vecB .

    If vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk , then find a unit vector along (vecA-vecB) .