Home
Class 11
PHYSICS
If the vectors (hati+ hatj + hatk) and...

If the vectors `(hati+ hatj + hatk)` and `3 hati` from two sides of a triangle, then area of triangle is :

A

`sqrt3` unit

B

`2sqrt3` unit

C

`(3)/(sqrt2)` unit

D

`3sqrt2` unit

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vectors \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{B} = 3\hat{i} \), we will follow these steps: ### Step 1: Define the vectors We have two vectors: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 3\hat{i} \) ### Step 2: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) To find the area of the triangle, we first need to compute the cross product \( \mathbf{A} \times \mathbf{B} \). Using the determinant form: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & 0 & 0 \end{vmatrix} \] ### Step 3: Compute the determinant Calculating the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = (1)(0) - (1)(0) = 0 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = (1)(0) - (1)(3) = -3 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = (1)(0) - (1)(3) = -3 \] Thus, we have: \[ \mathbf{A} \times \mathbf{B} = 0\hat{i} + 3\hat{j} - 3\hat{k} = 3\hat{j} - 3\hat{k} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of \( \mathbf{A} \times \mathbf{B} \) is given by: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(0)^2 + (3)^2 + (-3)^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 5: Calculate the area of the triangle The area \( A \) of the triangle formed by the two vectors is given by: \[ A = \frac{1}{2} |\mathbf{A} \times \mathbf{B}| = \frac{1}{2} (3\sqrt{2}) = \frac{3\sqrt{2}}{2} \] ### Final Answer Thus, the area of the triangle is \( \frac{3\sqrt{2}}{2} \). ---

To find the area of the triangle formed by the vectors \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{B} = 3\hat{i} \), we will follow these steps: ### Step 1: Define the vectors We have two vectors: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 3\hat{i} \) ### Step 2: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-II AIPMT/NEET & AIIMS (2006- 2018)|6 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise EXERCISE-III CHECK YOUR UNDERSTANDING|15 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise DOT PRODUCT|20 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If the vectors (hati+hatj+hatk) and (3 hati+ 2 hatj) form two sides of a triangle, then area of the triangle is :

If the vectors 6hati-2hatj+3hatkk,2hati+3hatj-6hatk and 3hati+6hatj-2hatk form a triangle, then it is

if the vectors 2hati-3hatj,hati+hatj-hatk and 3 hati-hatk from three concurrent edges of a parallelpiped, then find the volume of the parallelepied.

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

Prove that the vecotos 3hati+5hatj+2hatk, 2hati-3hatj-5hatk and 5hati+2hatj-3hatk form the sides of an equlateral triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the vectors a =3hati - 2hatj+hatk, b=hati - 3hatj+5hatk and c=2hati+hatj-4hatk form a right angled triangle.