Home
Class 12
MATHS
int(x^2e^(x))/((x+2)^(2))dx is equal to...

`int(x^2e^(x))/((x+2)^(2))dx` is equal to

A

`((x-1)/(x+2))e^(x)+c`

B

`((x-2)/(x+2))e^(x-1)+c`

C

`((x-2)/(x+2))e^(x)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^2 e^x}{(x+2)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral \( I \): \[ I = \int \frac{x^2 e^x}{(x+2)^2} \, dx \] We can add and subtract 4 in the numerator: \[ I = \int \frac{x^2 - 4 + 4}{(x+2)^2} e^x \, dx \] This simplifies to: \[ I = \int \frac{(x^2 - 4) + 4}{(x+2)^2} e^x \, dx \] ### Step 2: Factor the Numerator Notice that \( x^2 - 4 \) can be factored as: \[ x^2 - 4 = (x-2)(x+2) \] Thus, we can rewrite the integral: \[ I = \int \frac{(x-2)(x+2) + 4}{(x+2)^2} e^x \, dx \] ### Step 3: Separate the Integral Now we can separate the terms in the integral: \[ I = \int \left( \frac{x-2}{x+2} + \frac{4}{(x+2)^2} \right) e^x \, dx \] ### Step 4: Simplify the Integral This gives us two separate integrals: \[ I = \int \frac{x-2}{x+2} e^x \, dx + \int \frac{4}{(x+2)^2} e^x \, dx \] ### Step 5: Solve the First Integral For the first integral, we can use integration by parts. Let: - \( u = \frac{x-2}{x+2} \) and \( dv = e^x \, dx \) Then, we find \( du \) and \( v \): \[ du = \frac{(x+2)(1) - (x-2)(1)}{(x+2)^2} \, dx = \frac{4}{(x+2)^2} \, dx \] \[ v = e^x \] Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int \frac{x-2}{x+2} e^x \, dx = \frac{x-2}{x+2} e^x - \int e^x \cdot \frac{4}{(x+2)^2} \, dx \] ### Step 6: Combine the Integrals Now we can combine the results: \[ I = \left( \frac{x-2}{x+2} e^x - \int \frac{4 e^x}{(x+2)^2} \, dx \right) + \int \frac{4 e^x}{(x+2)^2} \, dx \] The integrals of \( \frac{4 e^x}{(x+2)^2} \) cancel out, leading to: \[ I = \frac{x-2}{x+2} e^x + C \] ### Final Answer Thus, the final answer is: \[ I = \frac{x-2}{x+2} e^x + C \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int(x e^(2x))/((1+2x)^2)dx

int(x e^x)/((1+x)^2)dx is equal to

Knowledge Check

  • If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

    A
    `k-1+(e )/(2)`
    B
    `k + 1 - ( e )/( 2)`
    C
    `k - 1 - ( e)/(2)`
    D
    `k+1+(e )/(2)`
  • Similar Questions

    Explore conceptually related problems

    Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

    int(x+1)^(2)e^(x)dx is equal to

    int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

    int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

    The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

    int_(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to