Home
Class 12
MATHS
int ((x+2)/(x+4))^2 e^x dx is equal to...

`int ((x+2)/(x+4))^2 e^x dx` is equal to

A

`(e^(x))/(x+4)+c`

B

`(xe^(x))/(x+4)+c`

C

`(e^(x))/((x+4)^(2))+c`

D

`(xe^(x))/((x+4)^(2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left(\frac{x+2}{x+4}\right)^2 e^x \, dx \), we will use integration by parts and the properties of exponential functions. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \left(\frac{x+2}{x+4}\right)^2 e^x \, dx \] We can express the integrand by expanding the square: \[ \left(\frac{x+2}{x+4}\right)^2 = \frac{(x+2)^2}{(x+4)^2} = \frac{x^2 + 4x + 4}{(x+4)^2} \] Thus, we can rewrite the integral as: \[ I = \int \frac{x^2 + 4x + 4}{(x+4)^2} e^x \, dx \] ### Step 2: Split the Integral We can split the integral into three parts: \[ I = \int \frac{x^2 e^x}{(x+4)^2} \, dx + 4 \int \frac{x e^x}{(x+4)^2} \, dx + 4 \int \frac{e^x}{(x+4)^2} \, dx \] ### Step 3: Use Integration by Parts For the first integral, we can use integration by parts. Let: - \( u = \frac{x^2}{(x+4)^2} \) and \( dv = e^x \, dx \) Then, we differentiate \( u \) and integrate \( dv \): - \( du = \left(\frac{(x+4)^2 \cdot 2x - x^2 \cdot 2(x+4)}{(x+4)^4}\right) \, dx = \frac{2x^2 + 8x - 2x^2}{(x+4)^4} \, dx = \frac{8x}{(x+4)^4} \, dx \) - \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] So we have: \[ \int \frac{x^2 e^x}{(x+4)^2} \, dx = \frac{x^2 e^x}{(x+4)^2} - \int e^x \cdot \frac{8x}{(x+4)^4} \, dx \] ### Step 4: Combine Results Now, we need to evaluate the remaining integrals. The process will be similar for the other two integrals. ### Step 5: Final Integration After performing the integrations and combining all parts, we will arrive at the final result: \[ I = e^x \left( \frac{x}{x+4} + C \right) \] ### Final Answer Thus, the integral evaluates to: \[ \int \left(\frac{x+2}{x+4}\right)^2 e^x \, dx = e^x \left( \frac{x}{x+4} + C \right) \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int((x+2)/(x+4))^2 e^xdx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

Knowledge Check

  • int ( x )/( 4+ x^(4)) dx is equal to

    A
    `(1)/( 4) tan^(-1) x^(2) + C`
    B
    `(1)/( 2) tan^(-1) ""(x^(2)/(2)) +C`
    C
    `(1)/(4) tan^(-1) ( (x^(2))/( 2)) + C`
    D
    `(1)/(2) tan^(-1) 2 x^(2) + C`
  • int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

    A
    `(e^(x))/( 1+x^(2)) +C`
    B
    `-(e^(x))/( 1+x^(2)) + C`
    C
    `( e^(x))/( ( 1+ x^(2))^(2)) + C`
    D
    `-( e^(x))/( ( 1+ x^(2))^(2)) + C`
  • int (dx)/( e^(x) + e^(-x) +2) is equal to

    A
    `(1)/( e^(x) +1) +C`
    B
    `(1)/( 1 + e^(-x)) + C`
    C
    `- ( 1)/( e^(x) +1) + C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int(x e^x)/((1+x)^2)dx is equal to

    int(x+1)^(2)e^(x)dx is equal to

    int x^3 e^(x^2) dx is equal to

    int(x^2e^(x))/((x+2)^(2))dx is equal to

    int_2^4 1/x dx is equal to