Home
Class 12
MATHS
Find the value of int(0)^(x){t}dt,x inR^...

Find the value of `int_(0)^(x){t}dt,x inR^(+)`, here {.} denotes fractional part of 'x'.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the integral \( \int_{0}^{x} \{t\} dt \) where \( \{t\} \) denotes the fractional part of \( t \), we can follow these steps: ### Step 1: Understand the Fractional Part The fractional part of \( t \), denoted as \( \{t\} \), can be expressed as: \[ \{t\} = t - \lfloor t \rfloor \] where \( \lfloor t \rfloor \) is the greatest integer less than or equal to \( t \). ### Step 2: Set Up the Integral We can rewrite the integral as: \[ \int_{0}^{x} \{t\} dt = \int_{0}^{x} (t - \lfloor t \rfloor) dt \] This can be separated into two integrals: \[ \int_{0}^{x} t dt - \int_{0}^{x} \lfloor t \rfloor dt \] ### Step 3: Calculate the First Integral The first integral is straightforward: \[ \int_{0}^{x} t dt = \left[ \frac{t^2}{2} \right]_{0}^{x} = \frac{x^2}{2} \] ### Step 4: Analyze the Second Integral To evaluate \( \int_{0}^{x} \lfloor t \rfloor dt \), we need to consider the behavior of \( \lfloor t \rfloor \) over the interval from \( 0 \) to \( x \). Assume \( x = n + f \) where \( n = \lfloor x \rfloor \) (the integer part) and \( f = \{x\} \) (the fractional part). The integral can be split into segments: - From \( 0 \) to \( 1 \): \( \lfloor t \rfloor = 0 \) - From \( 1 \) to \( 2 \): \( \lfloor t \rfloor = 1 \) - From \( 2 \) to \( 3 \): \( \lfloor t \rfloor = 2 \) - ... - From \( n \) to \( n + f \): \( \lfloor t \rfloor = n \) Thus, we can express the second integral as: \[ \int_{0}^{x} \lfloor t \rfloor dt = \int_{0}^{1} 0 dt + \int_{1}^{2} 1 dt + \int_{2}^{3} 2 dt + \ldots + \int_{n}^{n+f} n dt \] Calculating each segment: - \( \int_{0}^{1} 0 dt = 0 \) - \( \int_{1}^{2} 1 dt = 1 \) - \( \int_{2}^{3} 2 dt = 2 \) - ... - \( \int_{n}^{n+f} n dt = n \cdot f \) The total for the integer segments is: \[ 0 + 1 + 2 + \ldots + (n-1) + n \cdot f = \frac{(n-1)n}{2} + n \cdot f \] ### Step 5: Combine the Results Now we can combine the results of both integrals: \[ \int_{0}^{x} \{t\} dt = \frac{x^2}{2} - \left( \frac{(n-1)n}{2} + n \cdot f \right) \] This simplifies to: \[ \int_{0}^{x} \{t\} dt = \frac{x^2}{2} - \frac{(n-1)n}{2} - n \cdot f \] ### Final Result Thus, the final value of the integral is: \[ \int_{0}^{x} \{t\} dt = \frac{x^2}{2} - \frac{(n-1)n}{2} - n \cdot \{x\} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4) {x} dx (where , {.} denotes fractional part of x) is equal to

Evaluate int_(0)^(2){x} d x , where {x} denotes the fractional part of x.

The value of lim_(xto0)sin^(-1){x} (where {.} denotes fractional part of x) is

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

int_(0)^(4) {sqrt(x)} is equal to, where {x} denotes the fraction part of x.

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

Let y= {x}^([x]) then the value of int_0^3 yd x equals to (where {.} and [.] denote fractional part and integerpart function respectively)