Home
Class 12
MATHS
If f(x) is a function satisfying f(x)-...

If `f(x)` is a function satisfying `f(x)-f(y)=(y^y)/(x^x)f((x^x)/(y^y))AAx , y in R^*"and"f^(prime)(1)=1` , then find `f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given the condition: \[ f(x) - f(y) = \frac{y^y}{x^x} f\left(\frac{x^x}{y^y}\right) \] and the derivative condition \( f'(1) = 1 \). ### Step 1: Analyze the given functional equation We start with the functional equation: \[ f(x) - f(y) = \frac{y^y}{x^x} f\left(\frac{x^x}{y^y}\right) \] This suggests a relationship between the values of the function at different points. A common approach is to consider specific values for \( x \) and \( y \). ### Step 2: Substitute specific values Let’s set \( y = 1 \): \[ f(x) - f(1) = \frac{1^1}{x^x} f\left(\frac{x^x}{1^1}\right) \] This simplifies to: \[ f(x) - f(1) = \frac{1}{x^x} f(x^x) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ f(x) = f(1) + \frac{1}{x^x} f(x^x) \] ### Step 4: Guessing a form for \( f(x) \) We can guess that \( f(x) \) might have the form \( f(x) = a \ln x \) for some constant \( a \). This is a common form for functions that involve logarithmic properties. ### Step 5: Substitute \( f(x) = a \ln x \) Substituting \( f(x) = a \ln x \) into the equation: \[ f(x^x) = a \ln(x^x) = a \cdot x \ln x \] Now substituting back into our rearranged equation: \[ f(x) = f(1) + \frac{1}{x^x} (a \cdot x \ln x) \] ### Step 6: Calculate \( f(1) \) We know \( f(1) = a \ln 1 = 0 \). Thus, we have: \[ f(x) = \frac{a \cdot x \ln x}{x^x} \] ### Step 7: Simplifying further Since \( x^x = e^{x \ln x} \), we can express: \[ f(x) = a \cdot x \ln x \cdot e^{-x \ln x} = a \cdot \frac{\ln x}{x^{x-1}} \] ### Step 8: Find \( a \) using the derivative condition We need to satisfy \( f'(1) = 1 \). First, we differentiate \( f(x) \): \[ f'(x) = a \left( \frac{1}{x} + \ln x \cdot \frac{d}{dx}(x^{x-1}) \right) \] At \( x = 1 \): \[ f'(1) = a \left( 1 + 0 \right) = a \] Setting \( f'(1) = 1 \) gives us \( a = 1 \). ### Step 9: Final function Thus, we find: \[ f(x) = \ln x \] ### Conclusion The function \( f(x) \) that satisfies the given conditions is: \[ \boxed{f(x) = \ln x} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If f is polynomial function satisfying 2+f(x)f(y)=f(x)+f(y)+f(x y)AAx , y in R and if f(2)=5, then find the value of f(f(2))dot

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then