Home
Class 12
MATHS
The area of the triangle with vertices (...

The area of the triangle with vertices `(a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta)` is

A

`(3 sqrt3ab)/(4)`

B

`3sqrtab`

C

`(sqrt (3 ab ))/(4)`

D

`3sqrt (3ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle with vertices at the points \((a, 0)\), \((a \cos \theta, b \sin \theta)\), and \((a \cos \theta, -b \sin \theta)\), we can use the formula for the area of a triangle given by three vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] ### Step 1: Assign the coordinates Let: - \( (x_1, y_1) = (a, 0) \) - \( (x_2, y_2) = (a \cos \theta, b \sin \theta) \) - \( (x_3, y_3) = (a \cos \theta, -b \sin \theta) \) ### Step 2: Substitute the coordinates into the area formula Substituting the coordinates into the area formula: \[ \text{Area} = \frac{1}{2} \left| a(b \sin \theta - (-b \sin \theta)) + a \cos \theta(-b \sin \theta - 0) + a \cos \theta(0 - b \sin \theta) \right| \] ### Step 3: Simplify the expression Calculating each term: 1. The first term: \[ a(b \sin \theta - (-b \sin \theta)) = a(b \sin \theta + b \sin \theta) = a(2b \sin \theta) \] 2. The second term: \[ a \cos \theta(-b \sin \theta - 0) = -a b \sin \theta \cos \theta \] 3. The third term: \[ a \cos \theta(0 - b \sin \theta) = -a b \sin \theta \cos \theta \] Putting it all together: \[ \text{Area} = \frac{1}{2} \left| a(2b \sin \theta) - ab \sin \theta \cos \theta - ab \sin \theta \cos \theta \right| \] This simplifies to: \[ \text{Area} = \frac{1}{2} \left| 2ab \sin \theta - 2ab \sin \theta \cos \theta \right| \] ### Step 4: Factor out common terms Factoring out \(2ab\): \[ \text{Area} = \frac{1}{2} \left| 2ab \sin \theta (1 - \cos \theta) \right| \] ### Step 5: Final simplification This simplifies to: \[ \text{Area} = |ab \sin \theta (1 - \cos \theta)| \] Thus, the area of the triangle is: \[ \text{Area} = |ab \sin \theta (1 - \cos \theta)| \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The diameter of the nine point circle of the triangle with vertices (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R , is

sin theta -cos theta=0

Knowledge Check

  • sin^(3)theta + sin theta - sin theta cos^(2)theta =

    A
    0
    B
    `sin theta`
    C
    `sin 2 theta`
    D
    `2sin^(3)theta`
  • Similar Questions

    Explore conceptually related problems

    Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

    Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

    If (a cos theta_(1), a sin theta_(1)), ( a cos theta_(2), a sin theta_(2)), (a costheta_(3), a sin theta_(3)) represents the vertices of an equilateral triangle inscribed in x^(2) + y^(2) = a^(2) , then

    Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

    Eliminate theta from a sin theta + bcos theta = x "and" a cos theta -b sin theta = y

    Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

    Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta