Home
Class 12
PHYSICS
Power dissipated in pure inductance will...

Power dissipated in pure inductance will be-

A

`(1)/(2Li^(2))`

B

`2Li^(2)`

C

`(Li^(2))/(4)`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the power dissipated in pure inductance, we can follow these steps: ### Step 1: Understand the Components In an AC circuit, we have three main components: resistors, capacitors, and inductors. Each of these components behaves differently when an alternating current (AC) flows through them. **Hint:** Remember the roles of resistors, capacitors, and inductors in an AC circuit. ### Step 2: Power Dissipation in Components Power dissipation occurs primarily in resistors. Resistors convert electrical energy into heat, which is where power is dissipated. Capacitors and inductors, on the other hand, do not dissipate power in the same way. **Hint:** Focus on how each component interacts with AC current and how they handle energy. ### Step 3: Behavior of Inductors Inductors store energy in the form of a magnetic field when current flows through them. They do not convert electrical energy into heat, which means they do not dissipate power. **Hint:** Recall the concept of energy storage in inductors versus energy dissipation. ### Step 4: Conclusion Since inductors do not dissipate power, the power dissipated in a pure inductance is zero. **Final Answer:** The power dissipated in pure inductance is **0 watts**. ### Summary of Steps: 1. Identify the components in an AC circuit. 2. Understand how power is dissipated in resistors. 3. Recognize that inductors store energy rather than dissipate it. 4. Conclude that the power dissipated in pure inductance is zero.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

A series circuit connected across a 200 V, 60 Hz line consists of a capacitive reactance 30 Omega non inductive resistor of 44 Omega and a coil of inductive reactance 90 Omega and resistance 36 Omega as shown in the diagram The power dissipated in the inductance coil is

The average power is dissipated in a pure inductor is

Knowledge Check

  • Assertion : In a purely inductive or capacitive circuit, the current is referred to as wattless currents. Reason : No power is dissipated in a purely inductive or capacitive circuit even though a current is flowing in the circuit.

    A
    If both assertion ans reason are true ans reaason is the correct explanation of assertion.
    B
    If both assertion and reason are true but reason is not the correct explanation of assertion.
    C
    If assertion istrue but reason is false.
    D
    If both assertion and reason are false.
  • Similar Questions

    Explore conceptually related problems

    The average power dissipated in a pure inductor L carrying an alternating current of rms value I is .

    The average power dissipation in a pure capacitance in AC circuit is

    The power dissipated in the resistance R, in the circuit as shown in the figure, is maximum if R is equal to

    A charged capacitor is discharged through a resistance. The time constant of the circuit is eta . Then the value of time constant for the power dissipated through the resistance will be

    In the network shown in the figure, power dissipated in 3Omega and 12 W. Power dissipated in 4 Omega will be

    Four equal resistance dissipated 5 W of power together when connected in series to a battery of negligible internal resistance . The total power dissipated in these resistance when connected in parallel across the same battery would be .

    The power dissipated in the adjacent circuit is -