Home
Class 12
MATHS
Solve x^2-4-[x]=0 (where [] denotes the ...

Solve `x^2-4-[x]=0` (where `[]` denotes the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 4 - [x] = 0 \), where \([x]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Rewrite the equation We can rewrite the equation as: \[ x^2 - 4 = [x] \] This means we need to find the values of \(x\) such that the left-hand side equals the greatest integer of \(x\). ### Step 2: Analyze the left-hand side The left-hand side \(x^2 - 4\) is a quadratic function. It opens upwards (since the coefficient of \(x^2\) is positive) and has roots at: \[ x^2 - 4 = 0 \implies x = 2 \quad \text{and} \quad x = -2 \] The vertex of the parabola occurs at: \[ x = 0 \quad \text{(since the vertex of } ax^2 + bx + c \text{ is at } x = -\frac{b}{2a} \text{ and here } b = 0) \] At \(x = 0\): \[ x^2 - 4 = 0^2 - 4 = -4 \] ### Step 3: Determine the range of \(x^2 - 4\) The function \(x^2 - 4\) takes values from \(-4\) (at \(x=0\)) to \(+\infty\) as \(x\) moves away from zero. Thus, the range of \(x^2 - 4\) is \([-4, \infty)\). ### Step 4: Analyze the greatest integer function \([x]\) The greatest integer function \([x]\) takes integer values. For any real number \(x\), \([x]\) is the largest integer less than or equal to \(x\). Therefore, we need to find integer values that \(x^2 - 4\) can equal. ### Step 5: Set up intervals We will consider intervals based on the integer values of \([x]\): 1. For \([x] = n\), where \(n\) is an integer, we have: \[ x^2 - 4 = n \implies x^2 = n + 4 \implies x = \pm\sqrt{n + 4} \] We need to ensure that \(n \leq x < n + 1\) for the corresponding \(x\). ### Step 6: Solve for various integer values of \(n\) 1. **For \(n = -4\)**: \[ x^2 = 0 \implies x = 0 \quad \text{(valid since } -4 \leq 0 < -3\text{)} \] 2. **For \(n = -3\)**: \[ x^2 = 1 \implies x = \pm 1 \quad \text{(valid since } -3 \leq 1 < -2\text{)} \] 3. **For \(n = -2\)**: \[ x^2 = 2 \implies x = \pm\sqrt{2} \quad \text{(valid since } -2 \leq \sqrt{2} < -1\text{)} \] 4. **For \(n = -1\)**: \[ x^2 = 3 \implies x = \pm\sqrt{3} \quad \text{(valid since } -1 \leq \sqrt{3} < 0\text{)} \] 5. **For \(n = 0\)**: \[ x^2 = 4 \implies x = \pm 2 \quad \text{(valid since } 0 \leq 2 < 1\text{)} \] 6. **For \(n = 1\)**: \[ x^2 = 5 \implies x = \pm\sqrt{5} \quad \text{(valid since } 1 \leq \sqrt{5} < 2\text{)} \] 7. **For \(n = 2\)**: \[ x^2 = 6 \implies x = \pm\sqrt{6} \quad \text{(valid since } 2 \leq \sqrt{6} < 3\text{)} \] 8. **For \(n = 3\)**: \[ x^2 = 7 \implies x = \pm\sqrt{7} \quad \text{(valid since } 3 \leq \sqrt{7} < 4\text{)} \] ### Step 7: Compile the solutions From the valid intervals, we find: - \(x \in (-2, -1)\) from \(n = -2\) - \(x \in (2, 3)\) from \(n = 2\) Thus, the final solution is: \[ x \in (-2, -1) \cup (2, 3) \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

Knowledge Check

  • If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

    A
    `x in [2,3]`
    B
    `x in(1,2]`
    C
    `x in [1,2]`
    D
    `x in [1,3)`
  • Similar Questions

    Explore conceptually related problems

    Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

    The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

    Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

    lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

    If f(x) = [x^(-2) [x^(2)]] , (where [*] denotes the greatest integer function) x ne 0 , then incorrect statement

    The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

    Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.