Home
Class 12
CHEMISTRY
What mass of H(2)SO(4) could be produced...

What mass of `H_(2)SO_(4)` could be produced (in kg ) in the process given below if `5.52` kg of `FeS_(2)`is used
`FeS_(2)(s) + O_(2)(g) to Fe_(2)O_(3)(s)+SO_(2)(g)`
` SO_(2) (g) + O_(2)(g) to SO_(3)(g)`
`SO_(3)(g) + H_(2)SO_(4) (I) to H_(2)s_(2)O_(7)(I)`
`H_(2)S_(2)O_(7)(I) + H_(2)O(l) to H_(2)SO_(4)(sq)`
(At. wt. of `Fe = 56, S = 32`)

Text Solution

AI Generated Solution

The correct Answer is:
To find the mass of `H₂SO₄` produced from `5.52 kg` of `FeS₂`, we will follow these steps: ### Step 1: Write the balanced chemical equations 1. **First reaction**: \[ 4 \, \text{FeS}_2(s) + 11 \, \text{O}_2(g) \rightarrow 2 \, \text{Fe}_2\text{O}_3(s) + 8 \, \text{SO}_2(g) \] 2. **Second reaction**: \[ 2 \, \text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \, \text{SO}_3(g) \] 3. **Third reaction**: \[ \text{SO}_3(g) + \text{H}_2\text{S}_2\text{O}_7(l) \rightarrow \text{H}_2\text{S}_2\text{O}_7(l) \] 4. **Fourth reaction**: \[ \text{H}_2\text{S}_2\text{O}_7(l) + \text{H}_2\text{O}(l) \rightarrow 2 \, \text{H}_2\text{SO}_4(l) \] ### Step 2: Combine the reactions to find the overall reaction By combining the balanced equations, we can derive the overall reaction: \[ 4 \, \text{FeS}_2 + 11 \, \text{O}_2 \rightarrow 2 \, \text{Fe}_2\text{O}_3 + 8 \, \text{H}_2\text{SO}_4 \] ### Step 3: Calculate the molar masses - Molar mass of `FeS₂`: \[ \text{Fe} = 56 \, \text{g/mol}, \quad \text{S} = 32 \, \text{g/mol} \] \[ \text{Molar mass of FeS}_2 = 56 + (2 \times 32) = 56 + 64 = 120 \, \text{g/mol} \] - Molar mass of `H₂SO₄`: \[ \text{H} = 1 \, \text{g/mol}, \quad \text{S} = 32 \, \text{g/mol}, \quad \text{O} = 16 \, \text{g/mol} \] \[ \text{Molar mass of H}_2\text{SO}_4 = (2 \times 1) + 32 + (4 \times 16) = 2 + 32 + 64 = 98 \, \text{g/mol} \] ### Step 4: Calculate the number of moles of `FeS₂` Given mass of `FeS₂` = `5.52 kg` = `5520 g` \[ \text{Number of moles of FeS}_2 = \frac{\text{mass}}{\text{molar mass}} = \frac{5520 \, \text{g}}{120 \, \text{g/mol}} = 46 \, \text{moles} \] ### Step 5: Use stoichiometry to find moles of `H₂SO₄` From the balanced equation, `4 moles of FeS₂` produce `8 moles of H₂SO₄`. Therefore, for `46 moles of FeS₂`: \[ \text{Moles of H}_2\text{SO}_4 = \frac{8}{4} \times 46 = 92 \, \text{moles} \] ### Step 6: Calculate the mass of `H₂SO₄` \[ \text{Mass of H}_2\text{SO}_4 = \text{moles} \times \text{molar mass} = 92 \, \text{moles} \times 98 \, \text{g/mol} = 9016 \, \text{g} \] ### Step 7: Convert grams to kilograms \[ \text{Mass of H}_2\text{SO}_4 = \frac{9016 \, \text{g}}{1000} = 9.016 \, \text{kg} \] ### Final Answer The mass of `H₂SO₄` produced is approximately **9.016 kg**. ---
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

H_(2)underline(S_(2))O_(7)+H_(2)O to H_(2)SO_(4)

H_(2)underline(S_(2))O_(7)+H_(2)O to H_(2)SO_(4)

underline(S)O_(3)+H_(2)O to H_(2)SO_(4)

underline(S)O_(3)+H_(2)O to H_(2)SO_(4)

H_(2)underline(S_(2))O_(8)+H_(2)O to H_(2)SO_(4)+H_(2)O_(2)

H_(2)underline(S_(2))O_(8)+H_(2)O to H_(2)SO_(4)+H_(2)O_(2)

H_(4)underline(S_(2))O_(6)+H_(2)O to H_(2)SO_(3)+H_(2)SO_(4)

H_(4)underline(S_(2))O_(6)+H_(2)O to H_(2)SO_(3)+H_(2)SO_(4)

H_(2)underline(S)O_(5)+H_(2)O to H_(2)SO_(4)+H_(2)O_(2)

H_(2)underline(S)O_(5)+H_(2)O to H_(2)SO_(4)+H_(2)O_(2)