Home
Class 14
MATHS
(0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0...

`(0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98))` is equal to

A

0.6

B

0.1

C

0.06

D

0.05

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.8\overline{3} \div 7.5) / (2.3\overline{21} - 0.0\overline{98})\), we will convert the repeating decimals into fractions and then simplify the expression step by step. ### Step 1: Convert \(0.8\overline{3}\) into a fraction Let \(x = 0.8\overline{3}\). Then, \(10x = 8.3\overline{3}\). Subtracting the first equation from the second: \[ 10x - x = 8.3\overline{3} - 0.8\overline{3} \] This simplifies to: \[ 9x = 8.3 - 0.8 \] \[ 9x = 7.5 \] Thus, \[ x = \frac{7.5}{9} = \frac{75}{90} = \frac{5}{6} \] ### Step 2: Convert \(7.5\) into a fraction \[ 7.5 = \frac{75}{10} = \frac{15}{2} \] ### Step 3: Calculate \(0.8\overline{3} \div 7.5\) Now we compute: \[ \frac{5/6}{15/2} = \frac{5}{6} \times \frac{2}{15} = \frac{10}{90} = \frac{1}{9} \] ### Step 4: Convert \(2.3\overline{21}\) into a fraction Let \(y = 2.3\overline{21}\). Then, \(100y = 321.\overline{21}\). Subtracting the first equation from the second: \[ 100y - y = 321.\overline{21} - 2.3\overline{21} \] This simplifies to: \[ 99y = 321 - 2.3 \] Convert \(2.3\) into a fraction: \[ 2.3 = \frac{23}{10} \] Thus: \[ 99y = 321 - \frac{23}{10} = \frac{3210 - 23}{10} = \frac{3187}{10} \] So, \[ y = \frac{3187}{990} \] ### Step 5: Convert \(0.0\overline{98}\) into a fraction Let \(z = 0.0\overline{98}\). Then, \(100z = 9.8\overline{98}\). Subtracting the first equation from the second: \[ 100z - z = 9.8\overline{98} - 0.0\overline{98} \] This simplifies to: \[ 99z = 9.8 \] Convert \(9.8\) into a fraction: \[ 9.8 = \frac{98}{10} = \frac{49}{5} \] Thus: \[ 99z = \frac{49}{5} \Rightarrow z = \frac{49}{495} \] ### Step 6: Calculate \(2.3\overline{21} - 0.0\overline{98}\) Now we compute: \[ \frac{3187}{990} - \frac{49}{495} \] To subtract these fractions, we need a common denominator: \[ \frac{3187}{990} - \frac{98}{990} = \frac{3187 - 98}{990} = \frac{3089}{990} \] ### Step 7: Calculate the final expression Now we compute: \[ \frac{1/9}{3089/990} = \frac{1}{9} \times \frac{990}{3089} = \frac{110}{3089} \] ### Step 8: Simplify the fraction To convert this into decimal form: \[ \frac{110}{3089} \approx 0.0356 \] ### Conclusion The final result of the expression \((0.8\overline{3} \div 7.5) / (2.3\overline{21} - 0.0\overline{98})\) is approximately \(0.0356\).
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

0.12bar(3) is equal to

0.bar(001) is equal to

2.bar(6)-0.bar(82) is equal to

5.7bar(32) + 8.bar(613)

[(5.bar(88)-4.bar(58))-(0.bar(64)+0.bar(36))] is equal to

What is 0.bar(53) + 0·5bar3 equal to ?

KIRAN PUBLICATION-SIMPLIFICATION-TYPE-IV
  1. The value of 3 (1)/(2) - [2 (1)/(4) + {1 (1)/(4) - (1)/(2)(1 (1)/(2) -...

    Text Solution

    |

  2. (9)/(20) - [(1)/(5) + {(1)/(4) + ((5)/(6) - bar((1)/(3) + (1)/(2)))}] ...

    Text Solution

    |

  3. (0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98)) is equal to

    Text Solution

    |

  4. For what value of *, statement [(("*"))/(21) xx (("*"))/(189)] = 1 is ...

    Text Solution

    |

  5. If (1120)/(sqrt(P)) = 80, then P is equal to

    Text Solution

    |

  6. 3 (3)/(5) xx 3 (3)/(5) + 2 xx 3 (3)/(5) xx (2)/(5) + (2)/(5) xx (2)/(5...

    Text Solution

    |

  7. Simplify [3 (1)/(4) div {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) ...

    Text Solution

    |

  8. The value of (0.1 xx 0.1 xx 0.1 + 0.2 xx 0.2 xx 0.2 + 0.3 xx 0.3 xx 0....

    Text Solution

    |

  9. Find the sum of (1 - (1)/(n + 1)) + (1 - (2)/(n + 1)) + (1 - (3)/(n + ...

    Text Solution

    |

  10. If I = (3)/(4) + (5)/(6), II = 3 div [(4 div 5) div 6], III = [3 div (...

    Text Solution

    |

  11. The value of 1 div [1 + 1 div {1 + 1 div (1 + 1 div 2)}] is

    Text Solution

    |

  12. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  13. The value of 5 (1)/(3) + 1 (2)/(9) xx (1)/(4) (10 + (3)/(1 - (1)/(5)))...

    Text Solution

    |

  14. The simplification of 3.bar(36) - 2.bar(05) + 1.bar(33) equals:

    Text Solution

    |

  15. If x [-2 {-4(-a)}] + 5[-2{-2(-a)}] = 4a, then x =

    Text Solution

    |

  16. The simplification of (0.bar1)^2{1-9(0.1bar6)^2} is

    Text Solution

    |

  17. If '+' means 'div', 'xx', means '-', 'div' means 'xx' and '-' means '+...

    Text Solution

    |

  18. The value of [0.9-{2.3-3.2-(7.1 - 5.4 - 3.5)}] is: [0.9-{2.3-3.2-(7....

    Text Solution

    |

  19. (32)^(3) + (79)^(3) - (111)^(3) + 3 xx 32 xx 79 xx 111 is equal to

    Text Solution

    |

  20. ((5)/(2) + (3)/(2)) ((25)/(4) - (15)/(4) + (9)/(4)) is equal to

    Text Solution

    |