Home
Class 14
MATHS
(0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0...

`(0.8 bar(3) divide 7.5)/(2.3 bar(21) - 0.0bar(98))` is equal to

A

0.6

B

0.1

C

0.06

D

0.05

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((0.8\overline{3} \div 7.5) / (2.3\overline{21} - 0.0\overline{98})\), we will convert the repeating decimals into fractions and then simplify the expression step by step. ### Step 1: Convert \(0.8\overline{3}\) into a fraction Let \(x = 0.8\overline{3}\). Then, \(10x = 8.3\overline{3}\). Subtracting the first equation from the second: \[ 10x - x = 8.3\overline{3} - 0.8\overline{3} \] This simplifies to: \[ 9x = 8.3 - 0.8 \] \[ 9x = 7.5 \] Thus, \[ x = \frac{7.5}{9} = \frac{75}{90} = \frac{5}{6} \] ### Step 2: Convert \(7.5\) into a fraction \[ 7.5 = \frac{75}{10} = \frac{15}{2} \] ### Step 3: Calculate \(0.8\overline{3} \div 7.5\) Now we compute: \[ \frac{5/6}{15/2} = \frac{5}{6} \times \frac{2}{15} = \frac{10}{90} = \frac{1}{9} \] ### Step 4: Convert \(2.3\overline{21}\) into a fraction Let \(y = 2.3\overline{21}\). Then, \(100y = 321.\overline{21}\). Subtracting the first equation from the second: \[ 100y - y = 321.\overline{21} - 2.3\overline{21} \] This simplifies to: \[ 99y = 321 - 2.3 \] Convert \(2.3\) into a fraction: \[ 2.3 = \frac{23}{10} \] Thus: \[ 99y = 321 - \frac{23}{10} = \frac{3210 - 23}{10} = \frac{3187}{10} \] So, \[ y = \frac{3187}{990} \] ### Step 5: Convert \(0.0\overline{98}\) into a fraction Let \(z = 0.0\overline{98}\). Then, \(100z = 9.8\overline{98}\). Subtracting the first equation from the second: \[ 100z - z = 9.8\overline{98} - 0.0\overline{98} \] This simplifies to: \[ 99z = 9.8 \] Convert \(9.8\) into a fraction: \[ 9.8 = \frac{98}{10} = \frac{49}{5} \] Thus: \[ 99z = \frac{49}{5} \Rightarrow z = \frac{49}{495} \] ### Step 6: Calculate \(2.3\overline{21} - 0.0\overline{98}\) Now we compute: \[ \frac{3187}{990} - \frac{49}{495} \] To subtract these fractions, we need a common denominator: \[ \frac{3187}{990} - \frac{98}{990} = \frac{3187 - 98}{990} = \frac{3089}{990} \] ### Step 7: Calculate the final expression Now we compute: \[ \frac{1/9}{3089/990} = \frac{1}{9} \times \frac{990}{3089} = \frac{110}{3089} \] ### Step 8: Simplify the fraction To convert this into decimal form: \[ \frac{110}{3089} \approx 0.0356 \] ### Conclusion The final result of the expression \((0.8\overline{3} \div 7.5) / (2.3\overline{21} - 0.0\overline{98})\) is approximately \(0.0356\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-V|5 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • SIMPLIFICATION

    KIRAN PUBLICATION|Exercise TYPE-III|17 Videos
  • SIMPLE INTERSET

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • STATISTICS AND DATA INTERPRETATION

    KIRAN PUBLICATION|Exercise TYPE-VIII|8 Videos

Similar Questions

Explore conceptually related problems

0.12bar(3) is equal to

(0.34bar(67)+0.13bar(33)) is equal to

Knowledge Check

  • 0.bar(001) is equal to

    A
    `(1)/(1000)`
    B
    `(1)/(999)`
    C
    `(1)/(99)`
    D
    `(1)/(9)`
  • 2.bar(6)-0.bar(82) is equal to

    A
    `(181)/(999)`
    B
    `(182)/(99)`
    C
    `(82)/(99)`
    D
    None of these
  • 0.bar123 is equal to :

    A
    `(14)/(333)`
    B
    `(41)/(333)`
    C
    `(123)/(1000)`
    D
    `(441)/(333)`
  • Similar Questions

    Explore conceptually related problems

    5.7bar(32) + 8.bar(613)

    What is 0.bar(53) + 0·5bar3 equal to ?

    (0.bar11)+(0.bar22)xx3 is equal to

    0.bar142857+0.bar285714 is equal to

    [(5.bar(88)-4.bar(58))-(0.bar(64)+0.bar(36))] is equal to