Home
Class 14
MATHS
If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)...

If `x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))`, then find the value of `bx^(2)-ax+b`.

A

`2`

B

`1`

C

`0`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( x \): \[ x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} - \sqrt{a - 2b}} \] We need to find the value of \( bx^2 - ax + b \). ### Step 1: Simplifying \( x \) To simplify \( x \), we can multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{a + 2b} + \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})}{(\sqrt{a + 2b} - \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})} \] The denominator simplifies using the difference of squares: \[ (\sqrt{a + 2b})^2 - (\sqrt{a - 2b})^2 = (a + 2b) - (a - 2b) = 4b \] The numerator becomes: \[ (\sqrt{a + 2b} + \sqrt{a - 2b})^2 = (a + 2b) + (a - 2b) + 2\sqrt{(a + 2b)(a - 2b)} = 2a + 2\sqrt{(a + 2b)(a - 2b)} \] Thus, we have: \[ x = \frac{2a + 2\sqrt{(a + 2b)(a - 2b)}}{4b} = \frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b} \] ### Step 2: Finding \( x^2 \) Next, we compute \( x^2 \): \[ x^2 = \left(\frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b}\right)^2 = \frac{(a + \sqrt{(a + 2b)(a - 2b)})^2}{4b^2} \] Expanding the numerator: \[ (a + \sqrt{(a + 2b)(a - 2b)})^2 = a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + (a + 2b)(a - 2b) \] The term \( (a + 2b)(a - 2b) \) simplifies to \( a^2 - 4b^2 \). Thus: \[ x^2 = \frac{a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + a^2 - 4b^2}{4b^2} = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2} \] ### Step 3: Finding \( bx^2 - ax + b \) Now we substitute \( x \) and \( x^2 \) into \( bx^2 - ax + b \): \[ bx^2 = b\left(\frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2}\right) = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} \] Now substituting into \( bx^2 - ax + b \): \[ bx^2 - ax + b = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} - a\left(\frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b}\right) + b \] Combining these terms leads to: \[ = 0 \] Thus, the final result is: \[ bx^2 - ax + b = 0 \] ### Final Answer The value of \( bx^2 - ax + b \) is \( 0 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

Ifx=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), thenprovetbx ^(2)-ax+b=0

If x=(sqrt(a+2b)-sqrt(a-2b))/(sqrt((a+2b))+sqrt((a-2b))) , show that bx^(2)-ax+b=0

Knowledge Check

  • If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

    A
    ax
    B
    `0`
    C
    `-ax`
    D
    `-1`
  • If (sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))=sqrt(3), then a :b is equal to

    A
    `2 : sqrt(3)`
    B
    `sqrt(3) : 4`
    C
    `sqrt(3) : 2`
    D
    `4 : sqrt(3)`
  • If (sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))=sqrt(3) , then a : b is equal to

    A
    `2 : sqrt(3)`
    B
    `sqrt(3) : 4`
    C
    `sqrt(3) : 2`
    D
    `4 : sqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    x=(sqrt(b^(2)+ab)+sqrt(b^(2)-ab))/(sqrt(b^(2)+ab)-sqrt(b^(2)-ab)), then findthevalueof ax^(2)-2t

    If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

    If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b) -sqrt(a-2b)) then bx^(2)-ax+b is equal to (given that b ne 0 )

    If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

    If a = sqrt(5+ 2 sqrt(2)) and b = sqrt(5-2 sqrt(2)) then find the value of a^(2)-b^(2)