Home
Class 14
MATHS
If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)...

If `x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b))`, then find the value of `bx^(2)-ax+b`.

A

`2`

B

`1`

C

`0`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( x \): \[ x = \frac{\sqrt{a + 2b} + \sqrt{a - 2b}}{\sqrt{a + 2b} - \sqrt{a - 2b}} \] We need to find the value of \( bx^2 - ax + b \). ### Step 1: Simplifying \( x \) To simplify \( x \), we can multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{a + 2b} + \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})}{(\sqrt{a + 2b} - \sqrt{a - 2b})(\sqrt{a + 2b} + \sqrt{a - 2b})} \] The denominator simplifies using the difference of squares: \[ (\sqrt{a + 2b})^2 - (\sqrt{a - 2b})^2 = (a + 2b) - (a - 2b) = 4b \] The numerator becomes: \[ (\sqrt{a + 2b} + \sqrt{a - 2b})^2 = (a + 2b) + (a - 2b) + 2\sqrt{(a + 2b)(a - 2b)} = 2a + 2\sqrt{(a + 2b)(a - 2b)} \] Thus, we have: \[ x = \frac{2a + 2\sqrt{(a + 2b)(a - 2b)}}{4b} = \frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b} \] ### Step 2: Finding \( x^2 \) Next, we compute \( x^2 \): \[ x^2 = \left(\frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b}\right)^2 = \frac{(a + \sqrt{(a + 2b)(a - 2b)})^2}{4b^2} \] Expanding the numerator: \[ (a + \sqrt{(a + 2b)(a - 2b)})^2 = a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + (a + 2b)(a - 2b) \] The term \( (a + 2b)(a - 2b) \) simplifies to \( a^2 - 4b^2 \). Thus: \[ x^2 = \frac{a^2 + 2a\sqrt{(a + 2b)(a - 2b)} + a^2 - 4b^2}{4b^2} = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2} \] ### Step 3: Finding \( bx^2 - ax + b \) Now we substitute \( x \) and \( x^2 \) into \( bx^2 - ax + b \): \[ bx^2 = b\left(\frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b^2}\right) = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} \] Now substituting into \( bx^2 - ax + b \): \[ bx^2 - ax + b = \frac{2a^2 - 4b^2 + 2a\sqrt{(a + 2b)(a - 2b)}}{4b} - a\left(\frac{a + \sqrt{(a + 2b)(a - 2b)}}{2b}\right) + b \] Combining these terms leads to: \[ = 0 \] Thus, the final result is: \[ bx^2 - ax + b = 0 \] ### Final Answer The value of \( bx^2 - ax + b \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • POWER, INDICES AND SURDS

    KIRAN PUBLICATION|Exercise Type -VII|34 Videos
  • PIPE AND CISTERN

    KIRAN PUBLICATION|Exercise TIPE-IV|9 Videos
  • PROFIT AND LOSS

    KIRAN PUBLICATION|Exercise TEST YOURSELF|23 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)) then bx^(2)+b =

Ifx=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), thenprovetbx ^(2)-ax+b=0

If x=(sqrt(a+2b)-sqrt(a-2b))/(sqrt((a+2b))+sqrt((a-2b))) , show that bx^(2)-ax+b=0

x=(sqrt(b^(2)+ab)+sqrt(b^(2)-ab))/(sqrt(b^(2)+ab)-sqrt(b^(2)-ab)), then findthevalueof ax^(2)-2t

If a=(sqrt(2)+1)/(sqrt(2)-1) and b=(sqrt(2)-1)/(sqrt(2)+1) ,then find the value of a^(2)+b^(2)-4ab

If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b) -sqrt(a-2b)) then bx^(2)-ax+b is equal to (given that b ne 0 )

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

KIRAN PUBLICATION-POWER, INDICES AND SURDS-Test Yourself
  1. 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    Text Solution

    |

  2. ((x^a)/(x^b))^(1//ab)xx((x^b)/(x^c))^(1//bc)xx((x^c)/(x^a))^(1//ca)=?

    Text Solution

    |

  3. ((x^(a))/(x^(b)))^(a^(2)+ab+b^(2))((x^(b))/(x^(c )))^(b^(2)+bc+c^(2))(...

    Text Solution

    |

  4. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  5. Find the value of a and b in the following equation. (5+sqrt(3))/(7-...

    Text Solution

    |

  6. Simplify the following equation : (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/...

    Text Solution

    |

  7. If (7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+7sqrt(5)b, determ...

    Text Solution

    |

  8. Simplify : (6)/(2sqrt(3)-sqrt(6))+(sqrt(6))/(sqrt(3)+sqrt(2))-(4sqrt(3...

    Text Solution

    |

  9. Given sqrt(2)=1.4142, find correct to three places of decimal the valu...

    Text Solution

    |

  10. If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt...

    Text Solution

    |

  11. If x=(sqrt(a+2b)+sqrt(a-2b))/(sqrt(a+2b)-sqrt(a-2b)), then find the va...

    Text Solution

    |

  12. Find the positive square root of 14sqrt(5)-30

    Text Solution

    |

  13. Simplify : sqrt(((6+2sqrt(3))/(33-19sqrt(3))))

    Text Solution

    |

  14. Simplify : (4sqrt(3))/(2-sqrt(2))-(30)/(4sqrt(3)-sqrt(18))-(sqrt(18)...

    Text Solution

    |

  15. The simplified value of the following expression is : (1)/(sqrt(11-2sq...

    Text Solution

    |

  16. Find the value of (sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1...

    Text Solution

    |

  17. (28-10sqrt(3))^(1//2)-(7+4sqrt(3))^(-1//2) is equal to

    Text Solution

    |

  18. The value of : sqrt(-sqrt(3)+sqrt(3+8sqrt(7+4sqrt(3)))) is

    Text Solution

    |

  19. a,b,c,p are rational numbers where p is a not a perfect cube. If a+bp...

    Text Solution

    |

  20. What will come in place of both the question marks ? In the following ...

    Text Solution

    |