Home
Class 12
MATHS
ABCD is a pentagon .prove that the re...

ABCD is a pentagon .prove that the resultant of force ` vec A B ,` ` vec A E` ,` vec B C` ,` vec D C` ,` vec E D` and ` vec A C` ,is 3` vec A C` .

Text Solution

Verified by Experts

The correct Answer is:
`3vecAC`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |165 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (TRUE AND FALSE) |20 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE ) |3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

ABCDE is a pentagon.prove that the resultant of force vec AB,vec AE,vec BC,vec DC,vec ED and vec AC is 3vec AC

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0 vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

Knowledge Check

  • In a regualr hexagon ABCDEF, A vecB = vec a, B vec C = vecb and C vec D = vec c. " Then " A vec E =

    A
    `veca + vec b + vec c`
    B
    `2 veca + vec b + vec c `
    C
    `vec a + vec c `
    D
    `vec a + 2 vec b + 2 vec c `
  • Similar Questions

    Explore conceptually related problems

    [vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

    [vec a, vec b + vec c, vec d] = [vec a, vec b, vec d] + [vec a, vec c, vec d]

    [[vec a + vec b-vec c, vec b + vec c-vec a, vec c + vec a-vec b is equal to

    vec a * {(vec b + vec c) xx (vec a + 2vec b + 3vec c)} = [vec with bvec c]

    Prove that,for any three vectors vec a,vec b,vec c[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

    Give vec A + vec B+ vec C + vec D =0 , which of the following statements are correct ? (a) vec A, vec B ,vec C abd vec C must each be a null vector. (b) The magnitude of ( vec A + vec C) equals the magnitude of ( vec B + vec D0 . ltBrgt (c ) The magnitude of vec A can never be greater than the sum of the magnitude of vec B , vec C and vec D . ( d) vec B + vec C must lie in the plance of vec A + vec D. if vec A and vec D are not colliner and in the line of vec A and vec D , if they are collinear.

    Prove that [vec a,vec b,vec c+vec d]=[vec a,vec b,vec c]+[vec a,vec b,vec d]