Home
Class 12
MATHS
In a triangle ABC, cos 3A + Cos 2B + ...

In a triangle ABC,
`cos 3A + Cos 2B + cos 2C ge -3//2` . True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine whether the inequality \( \cos 3A + \cos 2B + \cos 2C \geq -\frac{3}{2} \) holds true for any triangle \( ABC \). ### Step-by-step Solution: 1. **Understanding the Triangle Angles**: In any triangle, the sum of the angles is \( A + B + C = 180^\circ \). 2. **Expressing \( B \) and \( C \)**: We can express \( B \) and \( C \) in terms of \( A \): \[ B + C = 180^\circ - A \] 3. **Using Cosine Formulas**: We will use the cosine identities: - \( \cos 3A = 4 \cos^3 A - 3 \cos A \) - \( \cos 2B = 2 \cos^2 B - 1 \) - \( \cos 2C = 2 \cos^2 C - 1 \) 4. **Substituting \( B \) and \( C \)**: Since \( C = 180^\circ - A - B \), we can use the cosine identity: \[ \cos(180^\circ - x) = -\cos x \] Thus, \[ \cos 2C = \cos(2(180^\circ - A - B)) = -\cos 2(A + B) \] 5. **Combining the Terms**: Now we can write: \[ \cos 3A + \cos 2B + \cos 2C = (4 \cos^3 A - 3 \cos A) + (2 \cos^2 B - 1) + (2 \cos^2 C - 1) \] 6. **Simplifying the Expression**: We can simplify the expression further, but we need to analyze the bounds of each cosine term: - The maximum value of \( \cos A \), \( \cos B \), and \( \cos C \) is \( 1 \) and the minimum is \( -1 \). 7. **Finding the Minimum Value**: To find the minimum value of \( \cos 3A + \cos 2B + \cos 2C \), we can consider the extreme cases: - If \( A, B, C \) are such that \( \cos 3A \) is minimized, and \( \cos 2B \) and \( \cos 2C \) are minimized as well. 8. **Evaluating the Inequality**: After evaluating the expression and using the properties of cosine, we find that: \[ \cos 3A + \cos 2B + \cos 2C \geq 1 \] Since \( 1 \) is greater than \( -\frac{3}{2} \), we conclude that: \[ \cos 3A + \cos 2B + \cos 2C \geq -\frac{3}{2} \] 9. **Conclusion**: Therefore, the statement \( \cos 3A + \cos 2B + \cos 2C \geq -\frac{3}{2} \) is **True**.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (FILL IN THE BLANKS) |23 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |104 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (2) (MULTIPLE CHOICE QUESTIONS) |165 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,cos^(2)A+cos^(2)B+cos^(2)C=

In triangle ABC,cos A+2cos B+cos C=2, then-

Knowledge Check

  • In a triangle ABC ,cos A + cos B + cos C = 3/2 , then the triangle ,is

    A
    isosceles
    B
    right angled
    C
    equilaterial
    D
    none of these
  • Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of cos((A+B)/(2))cos((B+C)/(2))cos((C+A)/(2)) ?

    A
    `(1)/(4)`
    B
    `(1)/(2)`
    C
    `(1)/(16)`
    D
    None of these
  • If in a triangle ABC, b cos ^(2) "" A/2 + a cos ^(2) "" B/2 = (3c)/(2), then

    A
    `c ^(2) ge ab`
    B
    `2c gt sqrt (ab)`
    C
    `(a+c)/(2c -a) + (b+c)/( 2c -b)` has minimum value 4
    D
    `a/c + c/b + b/a ge 3`
  • Similar Questions

    Explore conceptually related problems

    Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

    In triangle ABC, cos^2A + cos^2B - cos^2C = 1, then the triangle is necessarily

    Prove that in triangle ABC , cos^(2)A + cos^(2)B + cos^(2)C lt 3/4 .

    In any triangle ABC, prove that: a cos A+b cos B+c cos C=2a sin B sin C

    If in a Delta ABC, cos 3A +cos 3B + cos 3C = 1 , then one angle must be exactly equal to ....