Home
Class 12
MATHS
The moment of the force 5i+10j+16k actin...

The moment of the force `5i+10j+16k` acting at the point P, `2i-7j+10k` about the point O, `-5i+6j-10k` is

A

`20i-12j+135k`

B

`-408i-12j+135k`

C

`20k`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the force \( \mathbf{F} = 5\mathbf{i} + 10\mathbf{j} + 16\mathbf{k} \) acting at the point \( P = 2\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} \) about the point \( O = -5\mathbf{i} + 6\mathbf{j} - 10\mathbf{k} \), we will follow these steps: ### Step 1: Calculate the position vector \( \mathbf{R} \) The position vector \( \mathbf{R} \) from point \( O \) to point \( P \) is given by: \[ \mathbf{R} = \mathbf{P} - \mathbf{O} \] Substituting the values: \[ \mathbf{R} = (2\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}) - (-5\mathbf{i} + 6\mathbf{j} - 10\mathbf{k}) \] Calculating this gives: \[ \mathbf{R} = 2\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} + 5\mathbf{i} - 6\mathbf{j} + 10\mathbf{k} \] \[ \mathbf{R} = (2 + 5)\mathbf{i} + (-7 - 6)\mathbf{j} + (10 + 10)\mathbf{k} \] \[ \mathbf{R} = 7\mathbf{i} - 13\mathbf{j} + 20\mathbf{k} \] ### Step 2: Use the moment formula The moment \( \mathbf{M} \) of the force about point \( O \) is given by the cross product: \[ \mathbf{M} = \mathbf{R} \times \mathbf{F} \] Substituting the vectors: \[ \mathbf{M} = (7\mathbf{i} - 13\mathbf{j} + 20\mathbf{k}) \times (5\mathbf{i} + 10\mathbf{j} + 16\mathbf{k}) \] ### Step 3: Set up the determinant for the cross product We will use the determinant to compute the cross product: \[ \mathbf{M} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -13 & 20 \\ 5 & 10 & 16 \end{vmatrix} \] ### Step 4: Calculate the determinant Expanding the determinant: \[ \mathbf{M} = \mathbf{i} \begin{vmatrix} -13 & 20 \\ 10 & 16 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 7 & 20 \\ 5 & 16 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 7 & -13 \\ 5 & 10 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \mathbf{i} \): \[ \begin{vmatrix} -13 & 20 \\ 10 & 16 \end{vmatrix} = (-13)(16) - (20)(10) = -208 - 200 = -408 \] 2. For \( \mathbf{j} \): \[ \begin{vmatrix} 7 & 20 \\ 5 & 16 \end{vmatrix} = (7)(16) - (20)(5) = 112 - 100 = 12 \] 3. For \( \mathbf{k} \): \[ \begin{vmatrix} 7 & -13 \\ 5 & 10 \end{vmatrix} = (7)(10) - (-13)(5) = 70 + 65 = 135 \] ### Step 5: Combine the results Putting it all together: \[ \mathbf{M} = -408\mathbf{i} - 12\mathbf{j} + 135\mathbf{k} \] ### Final Answer Thus, the moment of the force about point \( O \) is: \[ \mathbf{M} = -408\mathbf{i} - 12\mathbf{j} + 135\mathbf{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (MULTIPLE CHOICE QUESTIONS)|69 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Self Assessment Test (Assertion/Reason )|1 Videos
  • ADDITION AND MULTIPLICATION OF VECTORS

    ML KHANNA|Exercise Problem Set (3) (FILL IN THE BLANKS) |8 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos

Similar Questions

Explore conceptually related problems

The moment of a force vec i+vec j+vec k acting through the point A=-2vec i+3vec j+vec k about the point B=vec i+2vec j+3vec k is

The incentre of the triangle formed by the points i+j+k,4i+j+k,4i+5j+k is

Knowledge Check

  • The vector moment of three forces i+2j-3k, 2i+3j+4k and -i-j-k acting on a particle at a point P (0, 1, 2) about the point A(1,-2,0) is

    A
    `-2(4i-2j-5k)`
    B
    `4i+5j+6k)`
    C
    `7i+2k`
    D
    none
  • A particle acted upon by constant forces 4i+j-3k and 3i+j-k is displaced from the point i+2j+3k to the point 5i+4j+k . The total work done by the forces is :

    A
    20 units
    B
    30 units
    C
    40 units
    D
    50 units
  • The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

    A
    `5hat(i)-5hat(j)+5hat(k)`
    B
    `5hat(i)+5hat(j)-6hat(k)`
    C
    `-5hat(i)-5hat(j)+5hat(k)`
    D
    `-5hat(i)-5hat(j)+2hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Find the vector moment of the forces : hat(i)+2hat(j)-3hat(k), 2hat(i)+3hat(j)+4hat(k) and -hat(i)-hat(j)+hat(k) acting on a particle at a point P (0, 1, 2) about the point A(1, -2, 0) .

    Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

    A force F=2hat i-lambdahat j+5hat k is applied at the point A(1,2,5). If its moment about the point (-1,-2,3) is 16hat i-6hat j+2 lambdahat k then lambda equals

    The equation of the plane passing through the points 3i-5j-k,-i+5j+7k and 3i-j+7k is

    What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?