Home
Class 12
MATHS
The domain of the real valued function ...

The domain of the real valued function ` sqrt((x+2) (5-x) ) - (1)/( sqrt(x^2 -4))` is

A

`[1,2] uu [2,5]`

B

`(2,5]`

C

`[3,4]`

D

`[3,5]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sqrt{(x+2)(5-x)} - \frac{1}{\sqrt{x^2 - 4}} \), we need to ensure that both parts of the function are defined and yield real values. This involves addressing the conditions for the square roots and the denominator. ### Step 1: Analyze the first part \( \sqrt{(x+2)(5-x)} \) For the square root to be defined, the expression inside must be non-negative: \[ (x+2)(5-x) \geq 0 \] **Finding the critical points:** Set the expression equal to zero: \[ x + 2 = 0 \quad \Rightarrow \quad x = -2 \] \[ 5 - x = 0 \quad \Rightarrow \quad x = 5 \] **Testing intervals:** We will test the intervals determined by the critical points \( -2 \) and \( 5 \): 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) \[ (-3 + 2)(5 - (-3)) = (-1)(8) < 0 \quad \text{(not valid)} \] 2. **Interval \( (-2, 5) \)**: Choose \( x = 0 \) \[ (0 + 2)(5 - 0) = (2)(5) > 0 \quad \text{(valid)} \] 3. **Interval \( (5, \infty) \)**: Choose \( x = 6 \) \[ (6 + 2)(5 - 6) = (8)(-1) < 0 \quad \text{(not valid)} \] **Conclusion for the first part:** The valid interval for \( (x+2)(5-x) \geq 0 \) is: \[ [-2, 5] \] ### Step 2: Analyze the second part \( \frac{1}{\sqrt{x^2 - 4}} \) For this part, the expression inside the square root must be positive (since it is in the denominator): \[ x^2 - 4 > 0 \] **Finding the critical points:** Set the expression equal to zero: \[ x^2 - 4 = 0 \quad \Rightarrow \quad x = \pm 2 \] **Testing intervals:** We will test the intervals determined by the critical points \( -2 \) and \( 2 \): 1. **Interval \( (-\infty, -2) \)**: Choose \( x = -3 \) \[ (-3)^2 - 4 = 9 - 4 = 5 > 0 \quad \text{(valid)} \] 2. **Interval \( (-2, 2) \)**: Choose \( x = 0 \) \[ 0^2 - 4 = -4 < 0 \quad \text{(not valid)} \] 3. **Interval \( (2, \infty) \)**: Choose \( x = 3 \) \[ 3^2 - 4 = 9 - 4 = 5 > 0 \quad \text{(valid)} \] **Conclusion for the second part:** The valid intervals for \( x^2 - 4 > 0 \) are: \[ (-\infty, -2) \cup (2, \infty) \] ### Step 3: Find the intersection of the two intervals Now, we need to find the intersection of the intervals from both parts: 1. From the first part: \( [-2, 5] \) 2. From the second part: \( (-\infty, -2) \cup (2, \infty) \) **Finding the intersection:** - The intersection with \( (-\infty, -2) \) gives us no valid values since \( -2 \) is not included. - The intersection with \( (2, \infty) \) gives us \( (2, 5] \). ### Final Domain Thus, the domain of the function is: \[ (2, 5] \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (4) |43 Videos
  • FUNCTIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (MATCHING ENTRIES )|4 Videos
  • FUNCTIONS

    ML KHANNA|Exercise PROBLEM SET (2) |40 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    ML KHANNA|Exercise Problem Set (2) (Self Assessment Test)|8 Videos
  • HEIGHTS AND DISTANCES

    ML KHANNA|Exercise Problem Set (3) FILL IN THE BLANKS|9 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the real valued function f(x)=sqrt(x^(2)-1)+(1)/(sqrt(x^(2)-3x+2))

Find the domain of the real function f(x)=sqrt(x^2 -4)

Knowledge Check

  • The domain of the real valued function f(x)=sqrt((x-2)/(3-x)) is . .

    A
    (2,3]
    B
    [2,3)
    C
    (2,3)
    D
    [2,3]
  • The domain of the function f(x)= sqrt(x^2 is :

    A
    `-inftyltxltinfty`
    B
    `0ltxltinfty`
    C
    R-{0}
    D
    `R^+cup{0}`
  • The domain of the real valued function f(x)=sqrt(1-2x)+2sin^(-1)((3x-1)/(2)) is

    A
    `[-(1)/(3),1]`
    B
    `[(1)/(2),1]`
    C
    `[-(1)/(2),(1)/(3)]`
    D
    `[-(1)/(3),(1)/(2)]`
  • Similar Questions

    Explore conceptually related problems

    Find the domain of the following functions: sqrt((x-2)(4-x))

    Write the domain of the real function f(x)=1/(sqrt(|x|-x))

    Write the domain of the real function f(x)=sqrt(x-[x]) .

    The domain of the function 1/sqrt((1-x)(x-2)) is

    The domain of the function f(x)=1/sqrt((5-x)(x-2)) is