Home
Class 14
MATHS
If (1)/( a) - (1)/( b) = (1)/( a - b) th...

If `(1)/( a) - (1)/( b) = (1)/( a - b)` then the value of ` a^(3) + b^(3) `is

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{a} - \frac{1}{b} = \frac{1}{a - b} \) and find the value of \( a^3 + b^3 \), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \frac{1}{a} - \frac{1}{b} = \frac{1}{a - b} \] ### Step 2: Find a common denominator The left-hand side can be rewritten using a common denominator: \[ \frac{b - a}{ab} = \frac{1}{a - b} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ (b - a)(a - b) = ab \] ### Step 4: Simplify the left-hand side Notice that \( (b - a)(a - b) = -(a - b)^2 \): \[ -(a - b)^2 = ab \] ### Step 5: Rearranging the equation Rearranging gives: \[ (a - b)^2 + ab = 0 \] ### Step 6: Analyze the equation Since \( (a - b)^2 \) is always non-negative, the only way for the sum to equal zero is if both terms are zero: \[ (a - b)^2 = 0 \quad \text{and} \quad ab = 0 \] This implies \( a = b \) and either \( a = 0 \) or \( b = 0 \). ### Step 7: Calculate \( a^3 + b^3 \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): - Since \( a = b \), we can substitute \( b \) with \( a \): \[ a^3 + b^3 = 2a^3 \] - If \( a = 0 \), then: \[ a^3 + b^3 = 0^3 + 0^3 = 0 \] ### Conclusion Thus, the value of \( a^3 + b^3 \) is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If a + b + c = 15 and (1)/(a) +(1)/(b) + (1)/(c) = (71)/(abc), then the value of a ^(3) + b ^(2) + c ^(3) -3 abc is

If (a)/(b) + (b)/(a) = 1 then the value of a ^(3) + b ^(2) - 2 is :

Knowledge Check

  • If (1)/(a +b) = (1)/(a) + (1)/(b), then the value of a ^(3) - b ^(3) is :

    A
    2
    B
    1
    C
    0
    D
    3
  • (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is

    A
    1
    B
    0
    C
    `-1`
    D
    2
  • If a + b + c = 15 and (1)/(a) + (1)/(b) + (1)/( c) = (71)/(bc) then the value of a^(3) + b^(3) + c^(3) - 3 abc is

    A
    160
    B
    180
    C
    200
    D
    220
  • Similar Questions

    Explore conceptually related problems

    If (a)/(b) + (b)/(a) =1, then the value of a ^(3) + b ^(3) is equal to

    If (a)/( b) + (b)/( a) = 1 the value of a ^(3) + b^(3) is equal to

    If a/b + b/a -1=0 , then the value of a^3 +b^3 is

    If 4 b^(2) + (1)/( b^(2)) = 2 then the value of 8 b^(2) + (1)/( b^(3)) is

    If a//b + b//a =1, then the value of a ^(3) + b ^(3) will be ?