Home
Class 14
MATHS
If (1)/( a) - (1)/( b) = (1)/( a - b) th...

If `(1)/( a) - (1)/( b) = (1)/( a - b)` then the value of ` a^(3) + b^(3) `is

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{a} - \frac{1}{b} = \frac{1}{a - b} \) and find the value of \( a^3 + b^3 \), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ \frac{1}{a} - \frac{1}{b} = \frac{1}{a - b} \] ### Step 2: Find a common denominator The left-hand side can be rewritten using a common denominator: \[ \frac{b - a}{ab} = \frac{1}{a - b} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ (b - a)(a - b) = ab \] ### Step 4: Simplify the left-hand side Notice that \( (b - a)(a - b) = -(a - b)^2 \): \[ -(a - b)^2 = ab \] ### Step 5: Rearranging the equation Rearranging gives: \[ (a - b)^2 + ab = 0 \] ### Step 6: Analyze the equation Since \( (a - b)^2 \) is always non-negative, the only way for the sum to equal zero is if both terms are zero: \[ (a - b)^2 = 0 \quad \text{and} \quad ab = 0 \] This implies \( a = b \) and either \( a = 0 \) or \( b = 0 \). ### Step 7: Calculate \( a^3 + b^3 \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): - Since \( a = b \), we can substitute \( b \) with \( a \): \[ a^3 + b^3 = 2a^3 \] - If \( a = 0 \), then: \[ a^3 + b^3 = 0^3 + 0^3 = 0 \] ### Conclusion Thus, the value of \( a^3 + b^3 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - III) |17 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - IV) |59 Videos
  • ALGEBRA

    KIRAN PUBLICATION|Exercise Test Yourself |25 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If a/b + b/a -1=0 , then the value of a^3 +b^3 is

KIRAN PUBLICATION-ALGEBRA-Questions Asked In Previous SSC Exams (Type - II)
  1. If a - b = 3 and a^(3) - b ^(3) = 117 then | a + b| is equal to

    Text Solution

    |

  2. If x = 93, y = 93, z = 94 then the value of ( x^(2) - y^(2)+ 10 xz ...

    Text Solution

    |

  3. If (1)/( a) - (1)/( b) = (1)/( a - b) then the value of a^(3) + b^(3...

    Text Solution

    |

  4. If a = 4.965 , b = 2.343 and c = 2. 622 , then the value of a^(3) -...

    Text Solution

    |

  5. If p = 999, then the value of 3 sqrt( p ( p^(2) + 3 p + 3)+ 1) is

    Text Solution

    |

  6. If a + b = 3 then the value of a^(3) + b^(3) + 9 ab is

    Text Solution

    |

  7. ( x + (1)/( x)) (x - (1)/( x)) ( x^(2) + (1)/( x^(2)) - 1) ( x^(2) + (...

    Text Solution

    |

  8. If a = 11 and b = 9 then the value of (( a^(2) + b^(2) + ab)/( a^...

    Text Solution

    |

  9. If a = sqrt( 7 + 2 sqrt( 12)) and b = sqrt( 7 - 2 sqrt( 12) ) " the...

    Text Solution

    |

  10. If the sum of (a)/( b) are its reciprocal is 1 and a ne 0 , b ne 0 ,...

    Text Solution

    |

  11. If x = 2 - 2 ^(1 // 3) + 2^(2//3) , then the value of x^(3) - 6 x ...

    Text Solution

    |

  12. If a^(3) - b ^(3) - c^(3) - 3abc = 0 then

    Text Solution

    |

  13. If p, q, r are all real numbers. Then ( p - q) ^(3) + (q - r) ^(3)...

    Text Solution

    |

  14. If a + b =1 and a ^(3) + b ^(3) + 3ab = k, then the value of k is :

    Text Solution

    |

  15. Out of the given responses, one of the factors of (a ^(2) - b^(2...

    Text Solution

    |

  16. If a = ( b^(2))/( b - a) then the value of a^(3) + b^(3) is

    Text Solution

    |

  17. If ((x^(2))/( yz)) + (( y^(2))/( zx)) + (( z^(2))/( xy)) = 3 then ...

    Text Solution

    |

  18. If p - 2q = 4 then the value of p^(3) - 8 q^(3) - 24 pq - 64 is

    Text Solution

    |

  19. If x = 19 and y = 18 then the value of ( x^(2) + y^(2) + xy)/( x^(3...

    Text Solution

    |

  20. If x + (1)/( x) = 2 and x is real , then the value of x^(17) + (...

    Text Solution

    |