Home
Class 14
MATHS
If x = ( sqrt( 3) + sqrt(2))/( sqrt(3)...

If ` x = ( sqrt( 3) + sqrt(2))/( sqrt(3) - sqrt(2)) and y = ( sqrt(3) - sqrt(2))/( sqrt(3) + sqrt(2))` then the value of ` ( x^(2) + 6 xy + y^(2))/( x^(2) - 6xy + y^(2))` is

A

`(13)/(11)`

B

`(17)/(15)`

C

`(26)/(23)`

D

`(27)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \frac{x^2 + 6xy + y^2}{x^2 - 6xy + y^2} \] where \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \quad \text{and} \quad y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}. \] ### Step 1: Rationalizing \( x \) We start with \( x \): \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}. \] To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}. \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6}. \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, \[ x = 5 + 2\sqrt{6}. \] ### Step 2: Rationalizing \( y \) Next, we rationalize \( y \): \[ y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}. \] Again, multiply by the conjugate of the denominator: \[ y = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6}. \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, \[ y = 5 - 2\sqrt{6}. \] ### Step 3: Finding \( xy \) Now we find \( xy \): \[ xy = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right) \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right) = 1. \] ### Step 4: Finding \( x^2 + y^2 \) Next, we calculate \( x^2 + y^2 \): \[ x^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}, \] \[ y^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6}. \] Adding these: \[ x^2 + y^2 = (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 98. \] ### Step 5: Finding \( x^2 + 6xy + y^2 \) Now we calculate \( x^2 + 6xy + y^2 \): \[ x^2 + 6xy + y^2 = x^2 + y^2 + 6 \cdot 1 = 98 + 6 = 104. \] ### Step 6: Finding \( x^2 - 6xy + y^2 \) Next, we calculate \( x^2 - 6xy + y^2 \): \[ x^2 - 6xy + y^2 = x^2 + y^2 - 6 \cdot 1 = 98 - 6 = 92. \] ### Step 7: Final Calculation Now we can find the final value: \[ \frac{x^2 + 6xy + y^2}{x^2 - 6xy + y^2} = \frac{104}{92} = \frac{26}{23}. \] Thus, the value is \[ \frac{26}{23}. \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - VI) |22 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

KIRAN PUBLICATION-ALGEBRA-Test Yourself
  1. If a = 7 + 4 sqrt( 3) find the value of ( 3 a ^(6) + 2a ^(4) + 4a^...

    Text Solution

    |

  2. What will be the angle between the lines y - x - 7 and sqrt (3 ) y...

    Text Solution

    |

  3. What will be the point on the x- axis which is eduidistant from th...

    Text Solution

    |

  4. What is the distance of the point (2 , 3) from the line 2 x + 3y +...

    Text Solution

    |

  5. In what ratio, the line joining (-1, 1) and ( 5, 7) is divided by the...

    Text Solution

    |

  6. A point R (h, k) divides a line segment between the axis in the rat...

    Text Solution

    |

  7. What point on the x-axis are at a distance of 4 units from the line ...

    Text Solution

    |

  8. In what ratio , the line joining (-1, 1) and ( 5, 7) is divide by t...

    Text Solution

    |

  9. What will be the co-ordinates of centroid of a triangle whose vertices...

    Text Solution

    |

  10. Find the area of the triangle formed by the straight lines 2 x + 3 ...

    Text Solution

    |

  11. If x = ( sqrt( p + 2 q)+ sqrt(p - 2q))/( sqrt( p + 2 q) - sqrt( p - 2...

    Text Solution

    |

  12. If x = ( sqrt( 3) + sqrt(2))/( sqrt(3) - sqrt(2)) and y = ( sqrt(3)...

    Text Solution

    |

  13. If pq ( p - q) = 1 then the value of p^(3) - q^(3)- (1)/( p^(3) q^...

    Text Solution

    |

  14. If 3 x + (3)/( 4x) = 6 then the value of 8 x ^(3) + (1)/( 8 x^(3))...

    Text Solution

    |

  15. If (a^(3) + b^(3))/( c^(3)) = (b^(3) + c^(3))/( a^(3)) = (c^(3) + a^(...

    Text Solution

    |

  16. If (x + 1)/( x - 1) = (a)/(b) and (1 - y)/( 1 + y) = (b)/(a) then the ...

    Text Solution

    |

  17. If ( x - 3) and ( 2 x - 5) are factors of the equation 2 x ^(2) +...

    Text Solution

    |

  18. If x + y = sqrt( 5) and x - y = sqrt(3) ,t hen the value of 6 xy ( x...

    Text Solution

    |

  19. If ( a - b) = (1)/(( b - c)) and a ne b ne c then the value of (1...

    Text Solution

    |

  20. If x = ( sqrt(2) + 1)/(sqrt(2) - 1), y = ( sqrt(2) - 1)/( sqrt(2) + 1...

    Text Solution

    |