Home
Class 14
MATHS
If x = ( sqrt( 3) + sqrt(2))/( sqrt(3)...

If ` x = ( sqrt( 3) + sqrt(2))/( sqrt(3) - sqrt(2)) and y = ( sqrt(3) - sqrt(2))/( sqrt(3) + sqrt(2))` then the value of ` ( x^(2) + 6 xy + y^(2))/( x^(2) - 6xy + y^(2))` is

A

`(13)/(11)`

B

`(17)/(15)`

C

`(26)/(23)`

D

`(27)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \frac{x^2 + 6xy + y^2}{x^2 - 6xy + y^2} \] where \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \quad \text{and} \quad y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}. \] ### Step 1: Rationalizing \( x \) We start with \( x \): \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}. \] To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}. \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6}. \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, \[ x = 5 + 2\sqrt{6}. \] ### Step 2: Rationalizing \( y \) Next, we rationalize \( y \): \[ y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}. \] Again, multiply by the conjugate of the denominator: \[ y = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6}. \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1. \] Thus, \[ y = 5 - 2\sqrt{6}. \] ### Step 3: Finding \( xy \) Now we find \( xy \): \[ xy = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right) \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right) = 1. \] ### Step 4: Finding \( x^2 + y^2 \) Next, we calculate \( x^2 + y^2 \): \[ x^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}, \] \[ y^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6}. \] Adding these: \[ x^2 + y^2 = (49 + 20\sqrt{6}) + (49 - 20\sqrt{6}) = 98. \] ### Step 5: Finding \( x^2 + 6xy + y^2 \) Now we calculate \( x^2 + 6xy + y^2 \): \[ x^2 + 6xy + y^2 = x^2 + y^2 + 6 \cdot 1 = 98 + 6 = 104. \] ### Step 6: Finding \( x^2 - 6xy + y^2 \) Next, we calculate \( x^2 - 6xy + y^2 \): \[ x^2 - 6xy + y^2 = x^2 + y^2 - 6 \cdot 1 = 98 - 6 = 92. \] ### Step 7: Final Calculation Now we can find the final value: \[ \frac{x^2 + 6xy + y^2}{x^2 - 6xy + y^2} = \frac{104}{92} = \frac{26}{23}. \] Thus, the value is \[ \frac{26}{23}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    KIRAN PUBLICATION|Exercise Questions Asked In Previous SSC Exams (Type - VI) |22 Videos
  • ALLIGATION OR MIXTURES

    KIRAN PUBLICATION|Exercise TEST YOURSELF|27 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

Knowledge Check

  • If x = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and y = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , then the value of x^(3) + y^(3) is :

    A
    1030
    B
    970
    C
    990
    D
    99
  • If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) find the value of x^(3)+y^(3)

    A
    `807`
    B
    `907`
    C
    `970`
    D
    `870`
  • If x = (sqrt3 - sqrt2)/( sqrt3 + sqrt2) and y = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value x ^(3) + y^(2) is :

    A
    950
    B
    730
    C
    650
    D
    970
  • Similar Questions

    Explore conceptually related problems

    If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

    If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

    If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

    If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), find x^(2)+y^(2)

    If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=