Home
Class 12
MATHS
Let L be the line of intersection of pla...

Let L be the line of intersection of planes `vec(r).(hat(i) - hat(j) + 2hat(k)) = 2` and `vec(r).(2hat(i) + hat(j) - hat(k)) = 2`. If `P(alpha, beta, gamma)` is the foot of perpendicular on L from the point (1,2,0), then the value of `35(alpha + beta + gamma)` is equal to :

A

101

B

119

C

143

D

134

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION-B)|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics Section A|40 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|30 Videos
  • JEE MAINS 2020

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS|250 Videos
  • JEE MAINS 2022

    JEE MAINS PREVIOUS YEAR|Exercise MATHEMATICS (SECTION - B)|10 Videos

Similar Questions

Explore conceptually related problems

Angle between hat i+hat j and the line of intersection of the planes vec r*(hat i+2hat j+3hat k)=0 and vec r*(3hat i+3hat j+hat k)=0 is equal to

Find the equation of the plane which contains the line of intersection of the planes: vec(r). (hat(i) - 2 hat(j) + 3 hat(k) ) - 4 = 0 and vec(r). ( - 2 hat(i) + hat(j) + hat(k)) + 5 = 0 and whose intercept on x-axis is equal to that of y-axis.

Knowledge Check

  • The position of a particle is given by vec(r )= (hat(i) + 2hat(j) - hat(k)) and momentum vec(P)= (3 hat(i) + 4 hat(j)-2 hat(k)) . The angular momentum is perpendicular to

    A
    X-axis
    B
    Y-axis
    C
    Z-axis
    D
    Line at equal angles to all the three axes
  • If angle bisector of vec(a) = 2hat(i) + 3hat(j) + 4hat(k) and vec(b) = 4hat(i) - 2hat(j) + 3 hat(k) is vec(c) = alpha hat(i) + 2hat(j) + beta hat(k) then :

    A
    `vec(c). hat(k) + 7= 0`
    B
    `vec(c) .hat(k) - 14 = 0`
    C
    `vec(c) .hat(k) + 14 = 0 `
    D
    `vec(c) .hat(k) - 7 =0`
  • Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

    A
    0
    B
    1
    C
    `-4`
    D
    `-2`
  • Similar Questions

    Explore conceptually related problems

    Find the point of intersection of the line : vec(r) = (hat(i) + 2 hat(j) + 3 hat(k) ) + lambda (2 hat(i) + hat(j) + 2 hat(k)) and the plane vec(r). (2 hat(i) - 6 hat(j) + 3 hat(k) ) + 5 = 0.

    vec(r )=(hat(i) +hat(j)) +lambda(2hat(i) -hat(j) +hat(k)) vec(r )=(2hat(i) +hat(j) -hat(k)) + mu (3hat(i) -5hat(j) +2hat(k))

    Find the angle between the planes vec r*(2hat i-hat j+hat k)=6 and vec r*(hat i+hat j+2hat k)=5

    the angle between the planes vec r*(2hat i-hat j+hat k)=6 and vec r*(hat i+hat j+2hat k)=5

    vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k)) vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))