Home
Class 9
MATHS
If x=9+4sqrt(5) and xy=1 , then find the...

If `x=9+4sqrt(5)` and `xy=1` , then find the value of `((1)/(x^(2))+(1)/(y^(2)))` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given values and equations: 1. **Given Values**: - \( x = 9 + 4\sqrt{5} \) - \( xy = 1 \) 2. **Finding \( y \)**: Since \( xy = 1 \), we can express \( y \) as: \[ y = \frac{1}{x} = \frac{1}{9 + 4\sqrt{5}} \] 3. **Rationalizing \( y \)**: To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator: \[ y = \frac{1}{9 + 4\sqrt{5}} \cdot \frac{9 - 4\sqrt{5}}{9 - 4\sqrt{5}} = \frac{9 - 4\sqrt{5}}{(9 + 4\sqrt{5})(9 - 4\sqrt{5})} \] 4. **Calculating the Denominator**: Using the difference of squares: \[ (9 + 4\sqrt{5})(9 - 4\sqrt{5}) = 9^2 - (4\sqrt{5})^2 = 81 - 80 = 1 \] Thus, we have: \[ y = 9 - 4\sqrt{5} \] 5. **Finding \( \frac{1}{x^2} \) and \( \frac{1}{y^2} \)**: - First, calculate \( \frac{1}{x^2} \): \[ \frac{1}{x^2} = \frac{1}{(9 + 4\sqrt{5})^2} \] We will need to expand \( (9 + 4\sqrt{5})^2 \): \[ (9 + 4\sqrt{5})^2 = 9^2 + 2 \cdot 9 \cdot 4\sqrt{5} + (4\sqrt{5})^2 = 81 + 72\sqrt{5} + 80 = 161 + 72\sqrt{5} \] Therefore: \[ \frac{1}{x^2} = \frac{1}{161 + 72\sqrt{5}} \] - Now calculate \( \frac{1}{y^2} \): \[ \frac{1}{y^2} = \frac{1}{(9 - 4\sqrt{5})^2} \] Expanding \( (9 - 4\sqrt{5})^2 \): \[ (9 - 4\sqrt{5})^2 = 9^2 - 2 \cdot 9 \cdot 4\sqrt{5} + (4\sqrt{5})^2 = 81 - 72\sqrt{5} + 80 = 161 - 72\sqrt{5} \] Thus: \[ \frac{1}{y^2} = \frac{1}{161 - 72\sqrt{5}} \] 6. **Finding \( \frac{1}{x^2} + \frac{1}{y^2} \)**: Now we can add \( \frac{1}{x^2} \) and \( \frac{1}{y^2} \): \[ \frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{161 + 72\sqrt{5}} + \frac{1}{161 - 72\sqrt{5}} \] To add these fractions, we find a common denominator: \[ = \frac{(161 - 72\sqrt{5}) + (161 + 72\sqrt{5})}{(161 + 72\sqrt{5})(161 - 72\sqrt{5})} \] The numerator simplifies to: \[ 161 - 72\sqrt{5} + 161 + 72\sqrt{5} = 322 \] The denominator, as calculated before, is: \[ (161 + 72\sqrt{5})(161 - 72\sqrt{5}) = 161^2 - (72\sqrt{5})^2 = 25921 - 25920 = 1 \] Thus: \[ \frac{1}{x^2} + \frac{1}{y^2} = \frac{322}{1} = 322 \] 7. **Final Answer**: The value of \( \frac{1}{x^2} + \frac{1}{y^2} \) is: \[ \boxed{322} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Subjective problems) (long answer type)|5 Videos
  • LINES AND ANGLES

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos

Similar Questions

Explore conceptually related problems

If x = 9 - 4sqrt(5) , find the value of x^(2) +(1)/(x^(2)) .

If x=1+sqrt(2) and y=1-sqrt(2), find the value of (x^(2)+y^(2))

Knowledge Check

  • If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

    A
    194
    B
    198
    C
    212
    D
    318
  • If x + (1)/(x) = 4sqrt(3) , then find the value of x^(2) + (1)/(x^(2)) ?

    A
    A)46
    B
    B)44
    C
    C)56
    D
    D)52
  • If x=7+4sqrt3 and xy=1, then the value of 1/x/62+1/y^2 is:

    A
    64
    B
    128
    C
    184
    D
    194
  • Similar Questions

    Explore conceptually related problems

    If 2x=a+a^(-1) and 2y=b+b^(-1) then find the value of xy+(sqrt((x^(2)-1)(y^(2)-1)))

    If x+(1)/(x)=sqrt(5), find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

    If 2x+3y=8 and xy=2; then find the value of 4x^(2)+9y^(2)

    If x=7+4sqrt3 and xy=1 then the value of (1/x^2+1/y^2) is

    If x= (sqrt""5) + 1 and y = (sqrt""5) -1 , then what is the value of (x^(2)//y^(2)) + (y^(2)//x^(2)) + 4[(x//y) + (y//x)]+6 ?