Home
Class 9
MATHS
One of the factor of (a+2b)^(3)+(2a-c)^(...

One of the factor of `(a+2b)^(3)+(2a-c)^(3)-(a+2c)^(3)+3(a+2b)(2a-c)(a+2c)` is

A

`2a+2b-3c`

B

`2a-2b+3c`

C

`2a+2b+3c`

D

`-2a-2b-3c`

Text Solution

AI Generated Solution

The correct Answer is:
To find one of the factors of the expression \((a + 2b)^3 + (2a - c)^3 - (a + 2c)^3 + 3(a + 2b)(2a - c)(a + 2c)\), we can use the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Identify the Variables**: We will let: - \(x = a + 2b\) - \(y = 2a - c\) - \(z = -(a + 2c)\) This allows us to rewrite the expression in terms of \(x\), \(y\), and \(z\). 2. **Apply the Identity**: The identity we will use is: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] Here, we can see that our expression can be rearranged to fit this identity. 3. **Rewrite the Expression**: The expression can be rewritten as: \[ (a + 2b)^3 + (2a - c)^3 + (-(a + 2c))^3 + 3(a + 2b)(2a - c)(-(a + 2c)) \] 4. **Calculate \(x + y + z\)**: Now we calculate: \[ x + y + z = (a + 2b) + (2a - c) - (a + 2c) = 2a + 2b - 3c \] 5. **Calculate \(x^2 + y^2 + z^2 - xy - xz - yz\)**: We need to compute: - \(x^2 = (a + 2b)^2\) - \(y^2 = (2a - c)^2\) - \(z^2 = (-(a + 2c))^2\) - \(xy = (a + 2b)(2a - c)\) - \(xz = (a + 2b)(-(a + 2c))\) - \(yz = (2a - c)(-(a + 2c))\) However, since we only need one factor, we can stop here. 6. **Conclusion**: From our calculations, we see that one of the factors of the original expression is: \[ 2a + 2b - 3c \] ### Final Answer: Thus, one of the factors of the expression is: \[ \boxed{2a + 2b - 3c} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Match the following)|3 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Assertion & Reason type)|5 Videos
  • POLYNOMIALS

    MTG IIT JEE FOUNDATION|Exercise EXERCISE (Multiple choice Question (Level-1))|35 Videos
  • NUMBER SYSTEMS

    MTG IIT JEE FOUNDATION|Exercise Olympiad/HOTS Corner|20 Videos
  • PROBABILITY

    MTG IIT JEE FOUNDATION|Exercise OLYMPIAD/HOTS CORNER|20 Videos

Similar Questions

Explore conceptually related problems

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Knowledge Check

  • Out of the given responses, one of the factors of (a ^(2) - b^(2))^(3) + ( b^(2) - c^(2))^(3) + (c^(2) - a^(2))^(3) is

    A
    (a + b) (a - b)
    B
    (a + b ) (a + b)
    C
    ( a - b) (a - b)
    D
    ( b - c) ( b - c)
  • What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

    A
    `(a+b) (a-b)`
    B
    `(a+b) (a+b)`
    C
    `(a-c) (a-c)`
    D
    `(b-c) (b-c)`
  • If (2a - 3) ^(2) + (3b+ 4) ^(2) + (6c +1) ^(2) =0, then the value of (a ^(3) + b ^(3) + c ^(3) - 3 abc)/(a ^(2) + b ^(2) + c ^(2)) + 3 is :

    A
    `abc + 3`
    B
    6
    C
    0
    D
    3
  • Similar Questions

    Explore conceptually related problems

    Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)

    The expression (a-b)^(3)+(b-c)^(3)+(c-a)^(3) can be factorized as (a)(a-b)(b-c)(c-a)(b)3(a-b)(b-c)(c-a)(c)-3(a-b)(b-c)(c-a)(d)(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca)

    Factorise: 9a^(3)b^(2)c-27a^(2)b^(3)c^(2)-36a^(2)b^(2)c^(3)

    The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

    If ( 2 a - 3) ^(2) + ( 3 b + 4 )^(2) + ( 6 c + 1)^(3) = 0 then the value of (a^(3) + b^(3) + c^(3) - 3 abc)/( a^(2) + b^(2) + c^(2)) + 3 is