Home
Class 12
MATHS
If vec(a) = 2hat(i) - 3hat(j) + hat(k), ...

If `vec(a) = 2hat(i) - 3hat(j) + hat(k), vec(b) = -hat(i) + hat(k), vec(c ) = 2hat(j) - hat(k)` are three vectors, find the area of the parallelogram having diagonals `vec(a) + vec(b)` and `vec(b) + vec(c )`.

Answer

Step by step text solution for If vec(a) = 2hat(i) - 3hat(j) + hat(k), vec(b) = -hat(i) + hat(k), vec(c ) = 2hat(j) - hat(k) are three vectors, find the area of the parallelogram having diagonals vec(a) + vec(b) and vec(b) + vec(c ). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 4 (Short Answer Type Questions - II|7 Videos
  • VECTOR ALGEBRA

    OSWAAL PUBLICATION|Exercise Topic - 2 (Short Answer Type Questions - II)|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    OSWAAL PUBLICATION|Exercise Topic - 3 (Long answer type questions - II)|23 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = x hat(i) + 2hat(j) - zhat(k) and vec(b) = 3hat(i) - y hat(j) + hat(k) are two equal vectors, then write the value of x+y+z.

If vec(a) = 2hat(i) - hat(j) + 3hat(k) and vec(b) = (6hat(i) + lambda hat(j) + 9 hat(k)) and vec(a) is parallel to vec(b) , find the value of lambda .

Knowledge Check

  • If vec a = 2i - 3j + k, vec b = -i + k, vec c = 2j-k then area of the parallelogram having diagonals vec a + vec b and vec b + vec c is

    A
    `sqrt21`
    B
    `1/2 sqrt21`
    C
    `sqrt23`
    D
    `1/2 sqrt23`
  • If vec(A)=2 hat(i) + 3 hat(j) - hat(k) and vec(B)= 4 hat(i) + 6 hat(j) -2 hat(k) the angle between vec(A) and vec(B) will be:

    A
    `pi`
    B
    `pi/3`
    C
    `pi/2`
    D
    `0^@`
  • If vec(a)=2hat(i)+lambda hat(j)+hat(k) and vec(b)=-hat(i)+2hat(j)-3hat(k) are orthogonal, then value of lambda is

    A
    0
    B
    1
    C
    `(3)/(2)`
    D
    `(5)/(2)`
  • Similar Questions

    Explore conceptually related problems

    If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .

    If vec(a) = 2hat(i) - 3hat(j) + 4hat(k), vec(b) = hat(i) + 2hat(j) - 3hat(k) and vec(c ) = 3hat(i) + 4hat(j) - hat(k) , then find vec(a).(vec(b) xx vec(c )) and (vec(a) xx vec(b)).vec(c ) . Is, vec(a).(vec(b) xx vec(c )) = (vec(a) xx vec(b)).vec(c ) ?

    If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .

    Let vec(a) = hat(i) + 4hat(j) + 2hat(k), vec(b) = 3hat(i) - 2hat(j) + 7hat(k) and vec(c )= 2hat(i) - hat(j) + 4hat(k) . Find a vector vec(p) which is perpendicular to both vec(a) and vec(b) and vec(p).vec(c ) = 18 .

    Let vec(a) =hat(i) +2hat(j) +hat(k),vec(b) =hat(i) -hat(j) +hat(k) and vec(c ) =hat(i) +hat(j) -hat(k) , vector in the plane of vec(a) and vec(b) whose projection on vec(c ) is 1/(sqrt(3)) is ______.