Home
Class 14
MATHS
If sec(theta-alpha), sectheta and sec(th...

If `sec(theta-alpha), sectheta` and `sec(theta+alpha)` are in AP, where `cos alpha ne 1` then what is the value of `sin^2 theta + cos alpha`?

A

0

B

1

C

`-1`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \sec(\theta - \alpha), \sec(\theta), \sec(\theta + \alpha) \) are in Arithmetic Progression (AP), then we can find the value of \( \sin^2 \theta + \cos \alpha \). ### Step-by-Step Solution: 1. **Understanding the condition for AP**: If three numbers \( a, b, c \) are in AP, then the condition is: \[ 2b = a + c \] Here, let \( a = \sec(\theta - \alpha) \), \( b = \sec(\theta) \), and \( c = \sec(\theta + \alpha) \). Therefore, we have: \[ 2 \sec(\theta) = \sec(\theta - \alpha) + \sec(\theta + \alpha) \] 2. **Expressing secants in terms of cosines**: Recall that \( \sec(x) = \frac{1}{\cos(x)} \). Thus, we can rewrite the equation: \[ 2 \cdot \frac{1}{\cos(\theta)} = \frac{1}{\cos(\theta - \alpha)} + \frac{1}{\cos(\theta + \alpha)} \] 3. **Finding a common denominator**: The common denominator for the right-hand side is \( \cos(\theta - \alpha) \cos(\theta + \alpha) \). Therefore, we can rewrite the equation as: \[ 2 \cdot \frac{1}{\cos(\theta)} = \frac{\cos(\theta + \alpha) + \cos(\theta - \alpha)}{\cos(\theta - \alpha) \cos(\theta + \alpha)} \] 4. **Using the cosine addition formula**: We know that: \[ \cos(\theta + \alpha) + \cos(\theta - \alpha) = 2 \cos(\theta) \cos(\alpha) \] Substituting this into our equation gives: \[ 2 \cdot \frac{1}{\cos(\theta)} = \frac{2 \cos(\theta) \cos(\alpha)}{\cos(\theta - \alpha) \cos(\theta + \alpha)} \] 5. **Cross-multiplying**: Cross-multiplying leads to: \[ 2 \cos(\theta - \alpha) \cos(\theta + \alpha) = 2 \cos^2(\theta) \cos(\alpha) \] Dividing both sides by 2: \[ \cos(\theta - \alpha) \cos(\theta + \alpha) = \cos^2(\theta) \cos(\alpha) \] 6. **Using the cosine product-to-sum identity**: We can use the identity: \[ \cos(A) \cos(B) = \frac{1}{2} [\cos(A + B) + \cos(A - B)] \] Applying this gives: \[ \frac{1}{2} [\cos(2\theta) + \cos(0)] = \cos^2(\theta) \cos(\alpha) \] Simplifying, we get: \[ \frac{1}{2} [\cos(2\theta) + 1] = \cos^2(\theta) \cos(\alpha) \] 7. **Rearranging the equation**: Rearranging gives: \[ \cos(2\theta) + 1 = 2 \cos^2(\theta) \cos(\alpha) \] Since \( \cos(2\theta) = 2\cos^2(\theta) - 1 \), we can substitute: \[ 2\cos^2(\theta) - 1 + 1 = 2 \cos^2(\theta) \cos(\alpha) \] This simplifies to: \[ 2\cos^2(\theta) = 2 \cos^2(\theta) \cos(\alpha) \] 8. **Dividing by \( 2\cos^2(\theta) \)** (assuming \( \cos^2(\theta) \neq 0 \)): \[ 1 = \cos(\alpha) \] Since \( \cos(\alpha) \neq 1 \) is given in the problem, we need to find the value of \( \sin^2 \theta + \cos \alpha \). 9. **Using the Pythagorean identity**: Since \( \cos^2(\theta) + \sin^2(\theta) = 1 \), we can express: \[ \sin^2(\theta) = 1 - \cos^2(\theta) \] 10. **Final substitution**: From the previous steps, we found that \( \cos^2(\theta) = 1 + \cos(\alpha) \). Thus: \[ \sin^2(\theta) + \cos(\alpha) = (1 - (1 + \cos(\alpha))) + \cos(\alpha) = 0 \] ### Conclusion: The value of \( \sin^2 \theta + \cos \alpha \) is \( 0 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos
  • STATISTICS

    PUNEET DOGRA|Exercise PRE YEAR QUESTIONS |163 Videos
  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos

Similar Questions

Explore conceptually related problems

If sec(2 theta-2 alpha),(1)/(2)cos ec^(2)theta,sec(2 theta+2 alpha) are in H.P. then

if sin(theta+alpha)=cos(theta+alpha) then tan alpha

Knowledge Check

  • If cos (theta - alpha),cos(theta),Cos(theta + alpha) are in H.P. and cos alpha ne 1 , then angle alpha lie in the

    A
    II quadrant
    B
    III quadrant
    C
    I quadrant
    D
    IV quadrant
  • If cos(theta-alpha),costheta,cos(theta+alpha) are in H.P., then costheta sec""(alpha)/(2)=?

    A
    0
    B
    `pm1`
    C
    2
    D
    `pmsqrt(2)`
  • If cos (theta - alpha), cos theta, cos (theta + alpha) are in H.P. then cos 2 theta is equal to

    A
    `1 - cos alpha`
    B
    `1 + cos alpha`
    C
    `1 - 2 cos alpha`
    D
    `1 + 2 cos alpha`
  • Similar Questions

    Explore conceptually related problems

    If cos(theta-alpha),cos theta,cos(theta+alpha) are in H.P. then cos theta.(sec(alpha))/(2)=

    If cot(theta-alpha),3cot theta,cot(theta+alpha) are in A.P. and theta is not an integral multiple of (pi)/(2), then the value of (4sin^(theta)theta)/(3sin^(2)alpha)=

    If sec(theta+alpha)+sec(theta-alpha)=2sec theta then show that cos^(2)theta=1+cos alpha

    If sec(theta+alpha)+sec(theta-alpha)=2sec theta then show that cos^(2)theta=1+cos alpha

    If sec(theta +alpha)+sec(theta-alpha = 2sectheta, costheta is equal to :