Home
Class 14
MATHS
(sqrt3+1)^2=?+sqrt12...

`(sqrt3+1)^2=?+sqrt12`

A

`2sqrt(3)+4`

B

`sqrt3`

C

`sqrt2`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt{3} + 1)^2 = ? + \sqrt{12}\), we will follow these steps: ### Step 1: Expand the left side of the equation Using the formula for squaring a binomial, \((a + b)^2 = a^2 + 2ab + b^2\), we can expand \((\sqrt{3} + 1)^2\). \[ (\sqrt{3} + 1)^2 = (\sqrt{3})^2 + 2(\sqrt{3})(1) + (1)^2 \] ### Step 2: Calculate each term Now we calculate each term in the expansion: - \((\sqrt{3})^2 = 3\) - \(2(\sqrt{3})(1) = 2\sqrt{3}\) - \((1)^2 = 1\) Putting it all together: \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 \] ### Step 3: Combine like terms Now we combine the constant terms: \[ 3 + 1 = 4 \] So, we have: \[ (\sqrt{3} + 1)^2 = 4 + 2\sqrt{3} \] ### Step 4: Set the equation Now we set the expanded left side equal to the right side of the original equation: \[ 4 + 2\sqrt{3} = ? + \sqrt{12} \] ### Step 5: Simplify \(\sqrt{12}\) We can simplify \(\sqrt{12}\): \[ \sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3} \] ### Step 6: Substitute back into the equation Now we substitute \(\sqrt{12}\) back into the equation: \[ 4 + 2\sqrt{3} = ? + 2\sqrt{3} \] ### Step 7: Isolate the question mark To isolate the question mark, we subtract \(2\sqrt{3}\) from both sides: \[ 4 + 2\sqrt{3} - 2\sqrt{3} = ? \] This simplifies to: \[ 4 = ? \] ### Final Answer Thus, the value of \(?\) is: \[ ? = 4 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SPEED, TIME AND DISTANCE

    MAHENDRA|Exercise EXERCISE|25 Videos
  • TEST - 10

    MAHENDRA|Exercise MULTIPLE CHOICE QUESTIONS|50 Videos

Similar Questions

Explore conceptually related problems

(sqrt3 + 1)/(2sqrt2) + (sqrt3 - 1)/(2sqrt2)

(sqrt(3)+1)(1-sqrt(12))+(9)/(sqrt(3)+sqrt(12))

Knowledge Check

  • The simplified value of (sqrt(3)+1)(10+sqrt(12))(sqrt(12)-2)(5-sqrt(3)) is

    A
    `16`
    B
    `88`
    C
    `176`
    D
    `132`
  • Given that sqrt(3)=1.732 , the value of (sqrt(3)+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is

    A
    `4.899`
    B
    `2.551`
    C
    `1.414`
    D
    `1.732`
  • Given that sqrt(3) = 1.732, the value of (3 + sqrt(6 ))/( 5 sqrt(3) - 2 sqrt(12) - sqrt(32) + sqrt(50)) is

    A
    `4.899`
    B
    `2.551`
    C
    `1.414`
    D
    `1.732`
  • Similar Questions

    Explore conceptually related problems

    The simplified value of (sqrt3-sqrt2)/(sqrt 12- sqrt8)-1/3xx sqrt27-1/2xx root (3)(27) is closest to?

    Simplify: (sqrt3 +1 ) (sqrt 3 - 1) (2 + sqrt 3) ( 2 - sqrt3)

    The simplest value of (3sqrt8 - 2 sqrt12 + sqrt20)/(3 sqrt18 - 2 sqrt 27 + sqrt45)

    (3+sqrt(6))/(5sqrt(3)-2sqrt(12)-sqrt(32)+sqrt(50)) is equal to

    (3+sqrt(6))/(5sqrt(3) - 2sqrt(12) - sqrt(32) + sqrt(50)) is equal to: