Home
Class 14
MATHS
If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and ...

If `x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) ` then `x^2 +xy +y^2` is a multiple of

A

11

B

3

C

9

D

All (a) , (b) and (c)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + xy + y^2 \) given \( x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \) and \( y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Calculate \( x \) We start with the expression for \( x \): \[ x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] To simplify \( x \), we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] Thus, we have: \[ x = 5 - 2\sqrt{6} \] ### Step 2: Calculate \( y \) Now, we calculate \( y \): \[ y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] Rationalizing the denominator: \[ y = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Thus, we have: \[ y = 5 + 2\sqrt{6} \] ### Step 3: Calculate \( x^2 \) and \( y^2 \) Now we calculate \( x^2 \): \[ x^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6} \] Next, we calculate \( y^2 \): \[ y^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \] ### Step 4: Calculate \( xy \) Now we calculate \( xy \): \[ xy = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Step 5: Calculate \( x^2 + xy + y^2 \) Now we can find \( x^2 + xy + y^2 \): \[ x^2 + y^2 + xy = (49 - 20\sqrt{6}) + (49 + 20\sqrt{6}) + 1 \] Simplifying this: \[ = 49 + 49 + 1 + (-20\sqrt{6} + 20\sqrt{6}) = 98 + 1 = 99 \] ### Conclusion Thus, \( x^2 + xy + y^2 = 99 \). ### Final Answer 99 is a multiple of 3, 9, and 11.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

Knowledge Check

  • If x=(sqrt3+sqrt2)/(sqrt3-sqrt2) and y=(sqrt3-sqrt2)/(sqrt3+sqrt2) , then the value of x^2+y^2 is

    A
    90
    B
    98
    C
    96
    D
    94
  • If x = (sqrt3 - sqrt2)/( sqrt3 + sqrt2) and y = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value x ^(3) + y^(2) is :

    A
    950
    B
    730
    C
    650
    D
    970
  • If x = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and y = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , then the value of x^(3) + y^(3) is :

    A
    1030
    B
    970
    C
    990
    D
    99
  • Similar Questions

    Explore conceptually related problems

    If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

    If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

    If a = ( sqrt3 - sqrt2 )/( sqrt3 + sqrt2) and b = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value of (a ^(2))/(b) + (b ^(2))/(a) is:

    If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?

    [(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to