Home
Class 14
MATHS
If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and ...

If `x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) ` then `x^2 +xy +y^2` is a multiple of

A

11

B

3

C

9

D

All (a) , (b) and (c)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + xy + y^2 \) given \( x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \) and \( y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Calculate \( x \) We start with the expression for \( x \): \[ x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \] To simplify \( x \), we will rationalize the denominator by multiplying the numerator and denominator by the conjugate of the denominator: \[ x = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6} \] Thus, we have: \[ x = 5 - 2\sqrt{6} \] ### Step 2: Calculate \( y \) Now, we calculate \( y \): \[ y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] Rationalizing the denominator: \[ y = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6} \] Thus, we have: \[ y = 5 + 2\sqrt{6} \] ### Step 3: Calculate \( x^2 \) and \( y^2 \) Now we calculate \( x^2 \): \[ x^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6} \] Next, we calculate \( y^2 \): \[ y^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \] ### Step 4: Calculate \( xy \) Now we calculate \( xy \): \[ xy = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1 \] ### Step 5: Calculate \( x^2 + xy + y^2 \) Now we can find \( x^2 + xy + y^2 \): \[ x^2 + y^2 + xy = (49 - 20\sqrt{6}) + (49 + 20\sqrt{6}) + 1 \] Simplifying this: \[ = 49 + 49 + 1 + (-20\sqrt{6} + 20\sqrt{6}) = 98 + 1 = 99 \] ### Conclusion Thus, \( x^2 + xy + y^2 = 99 \). ### Final Answer 99 is a multiple of 3, 9, and 11.
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))"and"y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then x^2+xy+y^2=

If x=(sqrt3+sqrt2)/(sqrt3-sqrt2)andy=(sqrt3-sqrt2)/(sqrt3+sqrt2) then find the value of x^(2)+y^(2) ?

If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) then what is the value of a^2/b+b^2/a ?

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^(2)+y^(2)

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

LUCENT PUBLICATION-INDICES AND SURDS -Exercise - 2A
  1. (12)/( 3+ sqrt(5 ) + 2sqrt(2)) is equal to

    Text Solution

    |

  2. Number of solution of the equation sqrt(x^(2)-x + 1) + (1)/(sqrt(x^(2)...

    Text Solution

    |

  3. If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2...

    Text Solution

    |

  4. If (sqrt5 - sqrt2) p = sqrt5 +sqrt2 and pq = (pq)^3 , then the value o...

    Text Solution

    |

  5. If sqrt(10+sqrt24 +sqrt40+sqrt60)= sqrtp+sqrtq+sqrtr then value of p +...

    Text Solution

    |

  6. Find the cube root of 72 -32sqrt5

    Text Solution

    |

  7. Value of 1/sqrt(11-2sqrt30)-3/sqrt(7-2sqrt10)-4/(sqrt(8+4sqrt3)) is

    Text Solution

    |

  8. Value of (3+sqrt6)/(5sqrt3-2sqrt12-sqrt32+sqrt50) is

    Text Solution

    |

  9. If a= sqrt((sqrt5+1)/(sqrt5-1)) then sqrt(a^2-a-1) is equal to .

    Text Solution

    |

  10. If x = (a + sqrt(a^(2) + b^(3)))^((1)/(3)) + (a-sqrt(a^(2) + b^(3)))^(...

    Text Solution

    |

  11. Value of sqrt(139-80sqrt3) is

    Text Solution

    |

  12. If (a+3)sqrt2 + 3 = b sqrt8 + a - 1 then value of a + b is

    Text Solution

    |

  13. If x gt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1...

    Text Solution

    |

  14. If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqr...

    Text Solution

    |

  15. lf x=(sqrt3)/2, then value of (sqrt(1+x))/(1+sqrt(1+x))+(sqrt(1-x))/(1...

    Text Solution

    |

  16. If x/y = y/z = z/w then (x^m+y^m +z^m+w^m)/(x^(-m)+y^(-m )+z^(-m)+w^(...

    Text Solution

    |

  17. Which of the following quantity is integer ?

    Text Solution

    |

  18. What is the real value of (256)^(0.16)xx(16)^(0.18) ?

    Text Solution

    |

  19. 2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

    Text Solution

    |

  20. If x = (2ab)/(b^2+1) then value of (sqrt(a+x)+sqrt(a-x))/(sqrt(a+x)-sq...

    Text Solution

    |