Home
Class 14
MATHS
If x gt2 then what is the value of sqrt...

If `x gt2` then what is the value of `sqrt(x+2sqrt(x-1))+sqrt(x-2sqrtx-1)`?

A

2

B

`2sqrt(x-1)`

C

`-2`

D

`-2sqrt(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \) given that \( x > 2 \), we can simplify each square root term step by step. ### Step 1: Simplify the first term We start with the first term: \[ \sqrt{x + 2\sqrt{x - 1}} \] Notice that \( x \) can be rewritten as \( \sqrt{x}^2 \). Therefore, we can express the term as: \[ \sqrt{\left(\sqrt{x}\right)^2 + 2\sqrt{x - 1}} \] This resembles the expansion of a binomial square, \( (a + b)^2 = a^2 + 2ab + b^2 \). We can rewrite it as: \[ \sqrt{(\sqrt{x} + \sqrt{x - 1})^2} \] Thus, we have: \[ \sqrt{x + 2\sqrt{x - 1}} = \sqrt{x} + \sqrt{x - 1} \] ### Step 2: Simplify the second term Now, we simplify the second term: \[ \sqrt{x - 2\sqrt{x - 1}} \] Similarly, we can express this as: \[ \sqrt{\left(\sqrt{x}\right)^2 - 2\sqrt{x - 1}} \] This also resembles the binomial square, but in this case, it can be rewritten as: \[ \sqrt{(\sqrt{x} - \sqrt{x - 1})^2} \] Thus, we have: \[ \sqrt{x - 2\sqrt{x - 1}} = \sqrt{x} - \sqrt{x - 1} \] ### Step 3: Combine the results Now we can combine both simplified terms: \[ \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} = (\sqrt{x} + \sqrt{x - 1}) + (\sqrt{x} - \sqrt{x - 1}) \] This simplifies to: \[ 2\sqrt{x} \] ### Conclusion Therefore, the value of the expression \( \sqrt{x + 2\sqrt{x - 1}} + \sqrt{x - 2\sqrt{x - 1}} \) when \( x > 2 \) is: \[ \boxed{2\sqrt{x}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If 1 lt x lt2 then what is the value of sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1)) ?

sqrt(x+2sqrt(x-1))+sqrt(x-2sqrt(x-1))>(3)/(2)

Knowledge Check

  • If x=5 +2 sqrt""6 , then what is the value of sqrtx + (1)/(sqrtx) ?

    A
    `2 sqrt""3`
    B
    `3 sqrt""2`
    C
    `2 sqrt""6`
    D
    `6 sqrt""2`
  • If x = 7 + 2 sqrt10, then what is the value of sqrtx - (1)/(sqrtx) ?

    A
    `2 sqrt2`
    B
    `(2)/(3) (2 sqrt5 + sqrt2)`
    C
    `- 2 sqrt2`
    D
    `(2)/(3) ( 2sqrt2 + sqrt5)`
  • If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

    A
    `sqrt6`
    B
    `2sqrt6`
    C
    6
    D
    `sqrt3`
  • Similar Questions

    Explore conceptually related problems

    If x = 7 + 2 sqrt10 , then what is the value of sqrtx - 1/sqrtx ?

    If x=6+2sqrt(6), then what is the value of sqrt(x-1)+(1)/(sqrt(x-1))

    find the value of x: (sqrt(x^2+1)-sqrt(x^2-1))/(sqrt(x^2+1)+sqrt(x^2-1))=1/3

    If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

    If x=5+2sqrt(6) , then what is the value of (sqrt(x)+(1)/(sqrt(x))) ?