Home
Class 14
MATHS
Expression (tan x)/(1 + sec x)- (tan x)/...

Expression `(tan x)/(1 + sec x)- (tan x)/(1 -sec x)` is equal to:

A

`"cosec"x`

B

2 cosec x

C

2 sin x

D

2 cos x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\tan x}{1 + \sec x} - \frac{\tan x}{1 - \sec x}\), we will follow these steps: ### Step 1: Write the expression The given expression is: \[ \frac{\tan x}{1 + \sec x} - \frac{\tan x}{1 - \sec x} \] ### Step 2: Find a common denominator To combine the fractions, we need a common denominator. The common denominator will be \((1 + \sec x)(1 - \sec x)\). ### Step 3: Rewrite the expression with the common denominator Now, we can rewrite the expression as: \[ \frac{\tan x(1 - \sec x) - \tan x(1 + \sec x)}{(1 + \sec x)(1 - \sec x)} \] ### Step 4: Simplify the numerator Expanding the numerator: \[ \tan x(1 - \sec x) - \tan x(1 + \sec x) = \tan x - \tan x \sec x - \tan x - \tan x \sec x \] This simplifies to: \[ -\tan x \sec x - \tan x \sec x = -2 \tan x \sec x \] ### Step 5: Simplify the denominator The denominator can be simplified using the difference of squares: \[ (1 + \sec x)(1 - \sec x) = 1^2 - (\sec x)^2 = 1 - \sec^2 x \] Using the identity \(1 - \sec^2 x = -\tan^2 x\), we can write: \[ 1 - \sec^2 x = -\tan^2 x \] ### Step 6: Combine the results Now we can substitute back into the expression: \[ \frac{-2 \tan x \sec x}{-\tan^2 x} \] The negatives cancel out, giving us: \[ \frac{2 \tan x \sec x}{\tan^2 x} \] ### Step 7: Simplify further This simplifies to: \[ \frac{2 \sec x}{\tan x} \] Since \(\sec x = \frac{1}{\cos x}\) and \(\tan x = \frac{\sin x}{\cos x}\), we have: \[ \frac{2 \cdot \frac{1}{\cos x}}{\frac{\sin x}{\cos x}} = \frac{2}{\sin x} = 2 \csc x \] ### Final Answer Thus, the expression \(\frac{\tan x}{1 + \sec x} - \frac{\tan x}{1 - \sec x}\) is equal to: \[ \boxed{2 \csc x} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11B|37 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

(tan 2x)/(1+ sec 2x) = tan x

sqrt((sec x-tan x)/(sec x+tan x)) is equal to

Knowledge Check

  • What is the expression (tan x )/( 1 + sec x) - (tan x)/( 1 - sec x) equal to ?

    A
    cosec x
    B
    2 cosec x
    C
    2 sin x
    D
    2 cos x
  • int e ^( sec x) tan x sec x dx is equal to

    A
    `e ^( tan x) + C`
    B
    `e ^( sec x) + C`
    C
    `e ^( secx) sec x + C`
    D
    `e ^( sec x ) tan x + C`
  • int e^(x) sec x (1 + tan x) dx is equal to

    A
    `e^(x) cos x + C`
    B
    `e^(x) sec x + C`
    C
    `e^(x) sin x + C`
    D
    `e^(x) tan x + C`
  • Similar Questions

    Explore conceptually related problems

    int e^x (tan x+1) sec x dx

    |(sec x,sin x,tan x),(0,1,0),(tan x,cot x,sec x)| is equal to -

    ∫tan^(-1) (sec x + tan x) dx

    For any real number x ge 1 , the expression sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x) is equal to

    If y=tan^(-1)(sec x-tan x) , then dy/dx is equal to