Home
Class 12
MATHS
If a = log(2)3, b = log(2) 5 and c = log...

If `a = log_(2)3, b = log_(2) 5` and `c = log_(7)2`, then `log_(140) 63` in terms of a, b, c is

A

`(2ac + 1)/(2c +bc + 1)`

B

`(2ac + 1)/(2a + c + a)`

C

`(2ac + 1)/(2c + ab + a)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( \log_{140} 63 \) in terms of \( a = \log_{2} 3 \), \( b = \log_{2} 5 \), and \( c = \log_{7} 2 \), we can follow these steps: ### Step 1: Use the Change of Base Formula We start with the change of base formula for logarithms: \[ \log_{140} 63 = \frac{\log_{2} 63}{\log_{2} 140} \] ### Step 2: Factor 63 and 140 Next, we factor 63 and 140: - \( 63 = 3^2 \times 7 \) - \( 140 = 2^2 \times 5 \times 7 \) ### Step 3: Apply Logarithm Properties Using the properties of logarithms, we can express the logarithms of the products: \[ \log_{2} 63 = \log_{2} (3^2 \times 7) = \log_{2} 3^2 + \log_{2} 7 = 2 \log_{2} 3 + \log_{2} 7 \] \[ \log_{2} 140 = \log_{2} (2^2 \times 5 \times 7) = \log_{2} 2^2 + \log_{2} 5 + \log_{2} 7 = 2 + \log_{2} 5 + \log_{2} 7 \] ### Step 4: Substitute Known Values Now, we substitute \( a \), \( b \), and \( c \): - \( \log_{2} 3 = a \) - \( \log_{2} 5 = b \) - To express \( \log_{2} 7 \), we can use the change of base formula: \[ \log_{2} 7 = \frac{1}{\log_{7} 2} = \frac{1}{c} \] Substituting these into our expressions: \[ \log_{2} 63 = 2a + \frac{1}{c} \] \[ \log_{2} 140 = 2 + b + \frac{1}{c} \] ### Step 5: Substitute Back into the Change of Base Formula Now we substitute these back into the change of base formula: \[ \log_{140} 63 = \frac{2a + \frac{1}{c}}{2 + b + \frac{1}{c}} \] ### Step 6: Simplify the Expression To simplify, we can multiply the numerator and denominator by \( c \): \[ \log_{140} 63 = \frac{2ac + 1}{2c + bc + 1} \] ### Final Answer Thus, we have: \[ \log_{140} 63 = \frac{2ac + 1}{bc + 2c + 1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|18 Videos
  • RECTANGULAR COORDINATES AND STRAIGHT LINE

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|16 Videos
  • SETS, RELATIONS AND FUNCTIONS

    BITSAT GUIDE|Exercise BITSAT Archives|19 Videos

Similar Questions

Explore conceptually related problems

If a=log_(4)5 and b=log_(5)6, then log_(2)3=

If a=log_(4)5 and b=log_(5)6 then log_(2)3 is

Knowledge Check

  • If a=log_(2)3,b=log_(2)5andc=log_(7)2 , then log_(140)63 in terms of a ,b , c is

    A
    `(2ac+1)/(2c+abc+1)`
    B
    `(2ac+1)/(2a+c+a)`
    C
    `(2ac+1)/(2c+ab+a)`
    D
    None of these
  • If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

    A
    `(2a+3b-1)/(5a+b-2)`
    B
    `(5a+b-1)/(3a+2b-2)`
    C
    `(3a+b-2)/(2a+3b-1)`
    D
    `(2a+5b-2)/(3a+b-1)`
  • Similar Questions

    Explore conceptually related problems

    If log_(2)3=a,log_(3)5=b,log_(7)2=c find log_(140)63 in terms of a,b,c.

    If log_(a)3=2 and log_(b)8=3, then log_(a)b is

    If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

    Given that log_(2)3=a,log_(3)5=b,log_(7)2=c then the value of log_(140)63 is equal to

    log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

    If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to