Home
Class 12
MATHS
f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x)...

`f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x))))` then

A

`(1-x)^2*f'(x)-2(f(x))^2=0`

B

`(1-x)^2*f'(x)+2(f(x))^2=0`

C

`(1+x)^2*f'(x)-2(f(x))^2=0`

D

`(1+x)^2*f'(x)+2(f(x))^2=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \cos(2 \tan^{-1}(\sin(\cot^{-1}(\sqrt{\frac{1-x}{x}})))) \), we will break it down step by step. ### Step 1: Simplify the innermost function We start with the expression inside the cosine function: \[ \cot^{-1}(\sqrt{\frac{1-x}{x}}) \] Let \( y = \cot^{-1}(\sqrt{\frac{1-x}{x}}) \). Then, we have: \[ \cot(y) = \sqrt{\frac{1-x}{x}} \] From the definition of cotangent, we know: \[ \cot(y) = \frac{\text{adjacent}}{\text{opposite}} = \frac{\sqrt{1-x}}{\sqrt{x}} \] Using this, we can find the sine: \[ \sin(y) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{x}}{\sqrt{1-x + x}} = \frac{\sqrt{x}}{1} \] Thus, \[ \sin(y) = \sqrt{x} \] ### Step 2: Substitute back into the function Now we substitute this back into our function: \[ f(x) = \cos(2 \tan^{-1}(\sqrt{x})) \] ### Step 3: Use the double angle formula for cosine We can use the double angle identity for cosine: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Let \( \theta = \tan^{-1}(\sqrt{x}) \). Then: \[ \sin(\theta) = \frac{\sqrt{x}}{\sqrt{1+x}} \] Now substituting this into the cosine double angle formula: \[ f(x) = 1 - 2\left(\frac{\sqrt{x}}{\sqrt{1+x}}\right)^2 \] Calculating \( \left(\frac{\sqrt{x}}{\sqrt{1+x}}\right)^2 \): \[ \left(\frac{\sqrt{x}}{\sqrt{1+x}}\right)^2 = \frac{x}{1+x} \] Thus, we have: \[ f(x) = 1 - 2\left(\frac{x}{1+x}\right) = 1 - \frac{2x}{1+x} \] ### Step 4: Combine the terms Now we simplify: \[ f(x) = \frac{(1+x) - 2x}{1+x} = \frac{1 - x}{1+x} \] ### Step 5: Differentiate \( f(x) \) Next, we differentiate \( f(x) \): Using the quotient rule: \[ f'(x) = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} \] This simplifies to: \[ f'(x) = \frac{-1 - x - 1 + x}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 6: Final expression Thus, we have: \[ f'(x) = -\frac{2}{(1+x)^2} \] ### Step 7: Verify the options Now, we check the options given in the question. We need to find: \[ (1-x^2)f'(x) + 2f^2(x) = 0 \] Substituting \( f(x) \) and \( f'(x) \): \[ (1-x^2)\left(-\frac{2}{(1+x)^2}\right) + 2\left(\frac{1-x}{1+x}\right)^2 = 0 \] After simplification, we can confirm that this holds true. ### Conclusion The required answer is: \[ 1 - x^2 \cdot f'(x) + 2f^2(x) = 0 \] The correct option is option number 2.
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) then at x=1,f'(x) is equal to

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) ,then at x=1,f'(x) is equal to

Knowledge Check

  • If: cos(tan^(-1)x)=sin (cot^(-1).(3)/(4)), then : x =

    A
    `1/2`
    B
    `3/4`
    C
    `pm(5)/(6)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Let f(x) = cos(tan^(-1) ( sin ( cot^(-1)x))) . The simplest form of f(x) can be written as ((x^(2) +A)/(x^(2) +B))^(1//2) . Then the value of (A + B) is ………………

    Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

    Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

    Let g(x)=sqrt(sin^(-1)(cos(tan^(-1)x))+cos^(-1)(sin(cot^(-1)x))) ,then int_(-sqrt((pi)/(2)))^(sqrt((pi)/(2)))g(x)dx equals

    (d) / (dx) (cos ^ (2) (tan ^ (- 1) (sin (cot ^ (- 1) x))))

    Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

    Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))