Home
Class 14
MATHS
If (sectheta - tantheta)/(sectheta + tan...

If `(sectheta - tantheta)/(sectheta + tantheta) = 3/5`,then the value of `("cosec"theta + cot theta)/("cosec"theta - cottheta)` is:

A

`27 + sqrt(15)`

B

`33 + 4sqrt(15)`

C

`31 + 8sqrt(15)`

D

`24 + sqrt(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta} = \frac{3}{5}\), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{\sec \theta - \tan \theta}{\sec \theta + \tan \theta} = \frac{3}{5} \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ 5(\sec \theta - \tan \theta) = 3(\sec \theta + \tan \theta) \] ### Step 3: Expand both sides Expanding both sides: \[ 5 \sec \theta - 5 \tan \theta = 3 \sec \theta + 3 \tan \theta \] ### Step 4: Rearranging the equation Rearranging the terms: \[ 5 \sec \theta - 3 \sec \theta = 5 \tan \theta + 3 \tan \theta \] This simplifies to: \[ 2 \sec \theta = 8 \tan \theta \] ### Step 5: Simplifying the equation Dividing both sides by 2: \[ \sec \theta = 4 \tan \theta \] ### Step 6: Using trigonometric identities Recall that \(\sec \theta = \frac{1}{\cos \theta}\) and \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Substituting these into the equation gives: \[ \frac{1}{\cos \theta} = 4 \cdot \frac{\sin \theta}{\cos \theta} \] This simplifies to: \[ 1 = 4 \sin \theta \] Thus, \[ \sin \theta = \frac{1}{4} \] ### Step 7: Finding \(\cos \theta\) Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \left(\frac{1}{4}\right)^2 + \cos^2 \theta = 1 \] \[ \frac{1}{16} + \cos^2 \theta = 1 \] \[ \cos^2 \theta = 1 - \frac{1}{16} = \frac{15}{16} \] Thus, \[ \cos \theta = \frac{\sqrt{15}}{4} \] ### Step 8: Finding \(\csc \theta\) and \(\cot \theta\) Now we can find \(\csc \theta\) and \(\cot \theta\): \[ \csc \theta = \frac{1}{\sin \theta} = 4 \] \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{\sqrt{15}}{4}}{\frac{1}{4}} = \sqrt{15} \] ### Step 9: Calculate \(\frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta}\) Now substituting these values into the expression: \[ \frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta} = \frac{4 + \sqrt{15}}{4 - \sqrt{15}} \] ### Step 10: Rationalizing the denominator To rationalize the denominator: \[ \frac{(4 + \sqrt{15})(4 + \sqrt{15})}{(4 - \sqrt{15})(4 + \sqrt{15})} = \frac{(4 + \sqrt{15})^2}{16 - 15} \] Calculating the numerator: \[ (4 + \sqrt{15})^2 = 16 + 8\sqrt{15} + 15 = 31 + 8\sqrt{15} \] Thus, we have: \[ \frac{31 + 8\sqrt{15}}{1} = 31 + 8\sqrt{15} \] ### Final Answer The value of \(\frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta}\) is: \[ \boxed{31 + 8\sqrt{15}} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(1)/(cosec theta+cot theta)=cosec theta-cot theta

If ("cosec" theta +cot theta)=x find "cosec" theta - cot theta .

Knowledge Check

  • If cosec theta - cot theta = q , then the value of cosec theta =

    A
    `q + ( 1)/( q)`
    B
    `q - ( 1)/( q)`
    C
    `(1)/( 2) ( q + ( 1)/( q))`
    D
    none
  • If "cosec"theta - cot theta = 1/3 , then the value of "cosec"theta + cot theta is:

    A
    1
    B
    2
    C
    3
    D
    4
  • If (sectheta + tan theta)/(sectheta-tantheta) = 5/3 , then sin theta is eqaul to :

    A
    `1/4`
    B
    `1/3`
    C
    `2/3`
    D
    `3/4`
  • Similar Questions

    Explore conceptually related problems

    If 5 costheta = 3 , then ( "cosec "theta+cot theta)/(" cosec " theta- cot theta) is equal to

    Prove that : (i) (1)/(sectheta-tantheta)+(1)/(sectheta+tantheta)=2sectheta " " (ii) ("cosec "theta+cottheta)/("cosec "theta-cottheta)=("cosec "theta+cottheta)^(2)

    If (sectheta+ tantheta)/(sectheta+tantheta)=5/3 ,then sintheta is equal to : यदी (sec theta + tan theta)/(sec theta - tan theta) = 5/3 हो, तो sin theta किसके बराबर होगा?

    If cos theta =(3)/(5) ,"find the value of "((5"cosec "theta- 4 tan theta )/(sectheta + cot theta)).

    If sin theta = 3/5 , then the value of (tan theta + cos theta)/(cot theta + cosec theta) is equal to