Home
Class 14
MATHS
If (cosec theta + cot theta) //(cosec th...

If `(cosec theta + cot theta) //(cosec theta - cot theta) = 7` , the find the value of `(4sin^2 theta - 1)//(4 sin^2 theta + 5)`

A

`2//9`

B

`1//9`

C

`1//3`

D

`4//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{4\sin^2 \theta - 1}{4\sin^2 \theta + 5}\) given that \(\frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta} = 7\). ### Step-by-Step Solution: 1. **Rewrite the given equation**: \[ \frac{\csc \theta + \cot \theta}{\csc \theta - \cot \theta} = 7 \] We can express \(\csc \theta\) and \(\cot \theta\) in terms of \(\sin \theta\) and \(\cos \theta\): \[ \csc \theta = \frac{1}{\sin \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Thus, we can rewrite the equation as: \[ \frac{\frac{1}{\sin \theta} + \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}} = 7 \] 2. **Simplify the equation**: The equation simplifies to: \[ \frac{1 + \cos \theta}{1 - \cos \theta} = 7 \] 3. **Cross-multiply to eliminate the fraction**: \[ 1 + \cos \theta = 7(1 - \cos \theta) \] Expanding the right side gives: \[ 1 + \cos \theta = 7 - 7\cos \theta \] 4. **Rearrange the equation**: Bringing all terms involving \(\cos \theta\) to one side: \[ \cos \theta + 7\cos \theta = 7 - 1 \] This simplifies to: \[ 8\cos \theta = 6 \] Therefore: \[ \cos \theta = \frac{6}{8} = \frac{3}{4} \] 5. **Find \(\sin^2 \theta\)** using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos^2 \theta\): \[ \sin^2 \theta + \left(\frac{3}{4}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{9}{16} = 1 \] \[ \sin^2 \theta = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] 6. **Substitute \(\sin^2 \theta\) into the expression**: Now we need to find: \[ \frac{4\sin^2 \theta - 1}{4\sin^2 \theta + 5} \] Substituting \(\sin^2 \theta = \frac{7}{16}\): \[ 4\sin^2 \theta = 4 \times \frac{7}{16} = \frac{28}{16} = \frac{7}{4} \] Now substituting into the expression: \[ \frac{\frac{7}{4} - 1}{\frac{7}{4} + 5} = \frac{\frac{7}{4} - \frac{4}{4}}{\frac{7}{4} + \frac{20}{4}} = \frac{\frac{3}{4}}{\frac{27}{4}} = \frac{3}{27} = \frac{1}{9} \] ### Final Answer: \[ \frac{4\sin^2 \theta - 1}{4\sin^2 \theta + 5} = \frac{1}{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

(1)/(cosec theta+cot theta)=cosec theta-cot theta

If ("cosec" theta +cot theta)=x find "cosec" theta - cot theta .

Knowledge Check

  • If (cosec theta - cot theta)=2 , the (cosec theta +cot theta) is equal to

    A
    2
    B
    `1/2`
    C
    1
    D
    `3/2`
  • If cosec theta + cot theta= 2.5 , then cosec theta = ?

    A
    `1.45`
    B
    `1.35`
    C
    `1.50`
    D
    `1.55`
  • Similar Questions

    Explore conceptually related problems

    cosec^4 theta-cot^4 theta=cosec^2theta+cot^2 theta

    csc theta(1+cos theta)(csc theta-cot theta)=1

    If cosec theta = (13)/(12) , then find the values of cot theta and sin theta .

    If cosec theta+cot theta=-(3)/(2) then find cosec theta

    If cot theta=24/7 , then find cosec theta and sin theta .

    If cot^4 theta+ cot^2 theta=3 then cosec^4 theta- cosec^2 theta = ?