Home
Class 14
MATHS
If x = [1//sqrt5 + sqrt3) ], y = [1// (s...

If `x = [1//sqrt5 + sqrt3) ], y = [1// (sqrt7 + sqrt5)] and z = [1 // sqrt7 + sqrt3 ) ],` then what is the value of `(x + y + z)` ?

A

`3//4 (sqrt7 - sqrt3)`

B

`sqrt7 - sqrt3`

C

`sqrt7 + sqrt5`

D

`1//2 (sqrt7 + sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y + z \) where: \[ x = \frac{1}{\sqrt{5} + \sqrt{3}}, \quad y = \frac{1}{\sqrt{7} + \sqrt{5}}, \quad z = \frac{1}{\sqrt{7} + \sqrt{3}} \] ### Step 1: Simplify \( x \) To simplify \( x \), we will rationalize the denominator: \[ x = \frac{1}{\sqrt{5} + \sqrt{3}} \cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2} \] Calculating the denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] Thus, we have: \[ x = \frac{\sqrt{5} - \sqrt{3}}{2} \] ### Step 2: Simplify \( y \) Next, we simplify \( y \): \[ y = \frac{1}{\sqrt{7} + \sqrt{5}} \cdot \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}} = \frac{\sqrt{7} - \sqrt{5}}{(\sqrt{7})^2 - (\sqrt{5})^2} \] Calculating the denominator: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] Thus, we have: \[ y = \frac{\sqrt{7} - \sqrt{5}}{2} \] ### Step 3: Simplify \( z \) Now, we simplify \( z \): \[ z = \frac{1}{\sqrt{7} + \sqrt{3}} \cdot \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} - \sqrt{3}} = \frac{\sqrt{7} - \sqrt{3}}{(\sqrt{7})^2 - (\sqrt{3})^2} \] Calculating the denominator: \[ (\sqrt{7})^2 - (\sqrt{3})^2 = 7 - 3 = 4 \] Thus, we have: \[ z = \frac{\sqrt{7} - \sqrt{3}}{4} \] ### Step 4: Combine \( x, y, z \) Now, we can add \( x, y, z \): \[ x + y + z = \frac{\sqrt{5} - \sqrt{3}}{2} + \frac{\sqrt{7} - \sqrt{5}}{2} + \frac{\sqrt{7} - \sqrt{3}}{4} \] To add these fractions, we need a common denominator. The least common multiple of 2 and 4 is 4. We rewrite \( x \) and \( y \): \[ x + y + z = \frac{2(\sqrt{5} - \sqrt{3})}{4} + \frac{2(\sqrt{7} - \sqrt{5})}{4} + \frac{\sqrt{7} - \sqrt{3}}{4} \] Combining the numerators: \[ = \frac{2(\sqrt{5} - \sqrt{3}) + 2(\sqrt{7} - \sqrt{5}) + (\sqrt{7} - \sqrt{3})}{4} \] Distributing: \[ = \frac{2\sqrt{5} - 2\sqrt{3} + 2\sqrt{7} - 2\sqrt{5} + \sqrt{7} - \sqrt{3}}{4} \] Notice that \( 2\sqrt{5} \) cancels out: \[ = \frac{3\sqrt{7} - 3\sqrt{3}}{4} \] Factoring out the common term: \[ = \frac{3(\sqrt{7} - \sqrt{3})}{4} \] ### Final Result Thus, the value of \( x + y + z \) is: \[ \frac{3(\sqrt{7} - \sqrt{3})}{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If N = (sqrt()7 - sqrt()5) (sqrt()7 + sqrt()5) , then what is the value of 1/M ?

If x = sqrt5 + sqrt3 and y = sqrt5 - sqrt3, then the value of x ^(4) - y ^(4) is

Knowledge Check

  • If N = sqrt7 - sqrt3 , then what is the value of (1/N)?

    A
    `(sqrt7 + sqrt3)`
    B
    `(sqrt7 + sqrt3)//4`
    C
    `4(sqrt7 + sqrt3)`
    D
    `(sqrt7 + sqrt3)//2`
  • If N = (sqrt7-sqrt5)/(sqrt7 + sqrt5) , then what is the value of 1/N?

    A
    `6-sqrt35`
    B
    `6+sqrt35`
    C
    `7+sqrt35`
    D
    `7-sqrt35`
  • If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3), then what is the value of N + (1/N)?

    A
    `2 sqrt2`
    B
    5
    C
    10
    D
    13
  • Similar Questions

    Explore conceptually related problems

    If N = (sqrt7 + sqrt5)(sqrt7-sqrt5) then what is the simplified value of 1/N?

    If x = (1)/( 7 - 4 sqrt3) and y = (1)/( 7 + 4 sqrt3) then the value of x ^(2) + y ^(2) is

    If N=((sqrt(7)-sqrt(5)))/((sqrt(7)+sqrt(5))) , then what is the value of (1)/(N) ?

    If x = (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)) and y is the reciprocal of x, then what is the value of (x^(3) + y^(3))

    If x = sqrt(5) + sqrt(3) and y = sqrt( 5) - sqrt(3) , then value of ( x^(4) - y^(4)) is