Home
Class 14
MATHS
If x = [1//sqrt5 + sqrt3) ], y = [1// (s...

If `x = [1//sqrt5 + sqrt3) ], y = [1// (sqrt7 + sqrt5)] and z = [1 // sqrt7 + sqrt3 ) ],` then what is the value of `(x + y + z)` ?

A

`3//4 (sqrt7 - sqrt3)`

B

`sqrt7 - sqrt3`

C

`sqrt7 + sqrt5`

D

`1//2 (sqrt7 + sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y + z \) where: \[ x = \frac{1}{\sqrt{5} + \sqrt{3}}, \quad y = \frac{1}{\sqrt{7} + \sqrt{5}}, \quad z = \frac{1}{\sqrt{7} + \sqrt{3}} \] ### Step 1: Simplify \( x \) To simplify \( x \), we will rationalize the denominator: \[ x = \frac{1}{\sqrt{5} + \sqrt{3}} \cdot \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{\sqrt{5} - \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2} \] Calculating the denominator: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] Thus, we have: \[ x = \frac{\sqrt{5} - \sqrt{3}}{2} \] ### Step 2: Simplify \( y \) Next, we simplify \( y \): \[ y = \frac{1}{\sqrt{7} + \sqrt{5}} \cdot \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} - \sqrt{5}} = \frac{\sqrt{7} - \sqrt{5}}{(\sqrt{7})^2 - (\sqrt{5})^2} \] Calculating the denominator: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] Thus, we have: \[ y = \frac{\sqrt{7} - \sqrt{5}}{2} \] ### Step 3: Simplify \( z \) Now, we simplify \( z \): \[ z = \frac{1}{\sqrt{7} + \sqrt{3}} \cdot \frac{\sqrt{7} - \sqrt{3}}{\sqrt{7} - \sqrt{3}} = \frac{\sqrt{7} - \sqrt{3}}{(\sqrt{7})^2 - (\sqrt{3})^2} \] Calculating the denominator: \[ (\sqrt{7})^2 - (\sqrt{3})^2 = 7 - 3 = 4 \] Thus, we have: \[ z = \frac{\sqrt{7} - \sqrt{3}}{4} \] ### Step 4: Combine \( x, y, z \) Now, we can add \( x, y, z \): \[ x + y + z = \frac{\sqrt{5} - \sqrt{3}}{2} + \frac{\sqrt{7} - \sqrt{5}}{2} + \frac{\sqrt{7} - \sqrt{3}}{4} \] To add these fractions, we need a common denominator. The least common multiple of 2 and 4 is 4. We rewrite \( x \) and \( y \): \[ x + y + z = \frac{2(\sqrt{5} - \sqrt{3})}{4} + \frac{2(\sqrt{7} - \sqrt{5})}{4} + \frac{\sqrt{7} - \sqrt{3}}{4} \] Combining the numerators: \[ = \frac{2(\sqrt{5} - \sqrt{3}) + 2(\sqrt{7} - \sqrt{5}) + (\sqrt{7} - \sqrt{3})}{4} \] Distributing: \[ = \frac{2\sqrt{5} - 2\sqrt{3} + 2\sqrt{7} - 2\sqrt{5} + \sqrt{7} - \sqrt{3}}{4} \] Notice that \( 2\sqrt{5} \) cancels out: \[ = \frac{3\sqrt{7} - 3\sqrt{3}}{4} \] Factoring out the common term: \[ = \frac{3(\sqrt{7} - \sqrt{3})}{4} \] ### Final Result Thus, the value of \( x + y + z \) is: \[ \frac{3(\sqrt{7} - \sqrt{3})}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = sqrt7 - sqrt3 , then what is the value of (1/N)?

If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3), then what is the value of N + (1/N)?