Home
Class 14
MATHS
If x = ( sqrt2 + 1)/( sqrt2 -1) and y =...

If `x = ( sqrt2 + 1)/( sqrt2 -1) and y = ( sqrt2 -1)/(sqrt2 +1),` then what is the alue of x + y ?

A

6

B

`sqrt2`

C

`3`

D

`3 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x + y \) where \( x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \) and \( y = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \), we can follow these steps: ### Step 1: Write down the expressions for \( x \) and \( y \) We have: \[ x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \] \[ y = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \] ### Step 2: Find a common denominator for \( x + y \) To add \( x \) and \( y \), we need a common denominator. The common denominator will be \( (\sqrt{2} - 1)(\sqrt{2} + 1) \). ### Step 3: Rewrite \( x + y \) using the common denominator \[ x + y = \frac{(\sqrt{2} + 1)(\sqrt{2} + 1) + (\sqrt{2} - 1)(\sqrt{2} - 1)}{(\sqrt{2} - 1)(\sqrt{2} + 1)} \] ### Step 4: Expand the numerators Now we will expand both parts of the numerator: 1. For \( (\sqrt{2} + 1)(\sqrt{2} + 1) \): \[ (\sqrt{2} + 1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \] 2. For \( (\sqrt{2} - 1)(\sqrt{2} - 1) \): \[ (\sqrt{2} - 1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] ### Step 5: Combine the expanded numerators Now we add the two results: \[ (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6 \] ### Step 6: Simplify the denominator The denominator can be simplified as follows: \[ (\sqrt{2} - 1)(\sqrt{2} + 1) = \sqrt{2}^2 - 1^2 = 2 - 1 = 1 \] ### Step 7: Final expression for \( x + y \) Now we can write: \[ x + y = \frac{6}{1} = 6 \] ### Conclusion Thus, the value of \( x + y \) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)