Home
Class 12
MATHS
If f(x)=3+cos^-1(cos(pi/2+x)cos(pi/2-x)+...

If `f(x)=3+cos^-1(cos(pi/2+x)cos(pi/2-x)+sin(pi/2+x)sin(pi/2-x)) , x in [0,pi]` then find the minimum value of f(x) is

A

4

B

-2

C

-3

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(x) = 3 + \cos^{-1}(\cos(\frac{\pi}{2} + x) \cos(\frac{\pi}{2} - x) + \sin(\frac{\pi}{2} + x) \sin(\frac{\pi}{2} - x)) \) for \( x \in [0, \pi] \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse cosine Using the angle addition formula, we know that: \[ \cos(A) \cos(B) + \sin(A) \sin(B) = \cos(A - B) \] Let \( A = \frac{\pi}{2} + x \) and \( B = \frac{\pi}{2} - x \). Then: \[ A - B = \left(\frac{\pi}{2} + x\right) - \left(\frac{\pi}{2} - x\right) = 2x \] Thus, we can rewrite the expression as: \[ \cos(\frac{\pi}{2} + x) \cos(\frac{\pi}{2} - x) + \sin(\frac{\pi}{2} + x) \sin(\frac{\pi}{2} - x) = \cos(2x) \] ### Step 2: Substitute back into the function Now substituting back into \( f(x) \): \[ f(x) = 3 + \cos^{-1}(\cos(2x)) \] ### Step 3: Simplify \( \cos^{-1}(\cos(2x)) \) The function \( \cos^{-1}(\cos(\theta)) \) returns \( \theta \) if \( \theta \) is in the range \( [0, \pi] \). Since \( 2x \) varies from \( 0 \) to \( 2\pi \) as \( x \) varies from \( 0 \) to \( \pi \), we need to consider the principal value: - For \( 0 \leq 2x \leq \pi \), \( \cos^{-1}(\cos(2x)) = 2x \) - For \( \pi < 2x \leq 2\pi \), \( \cos^{-1}(\cos(2x)) = 2\pi - 2x \) Since \( x \in [0, \pi] \), we have \( 2x \in [0, 2\pi] \). Thus, we can express \( f(x) \) as: \[ f(x) = \begin{cases} 3 + 2x & \text{if } 0 \leq 2x \leq \pi \\ 3 + (2\pi - 2x) & \text{if } \pi < 2x \leq 2\pi \end{cases} \] ### Step 4: Determine the intervals 1. For \( 0 \leq x \leq \frac{\pi}{2} \): \( f(x) = 3 + 2x \) 2. For \( \frac{\pi}{2} < x \leq \pi \): \( f(x) = 3 + (2\pi - 2x) \) ### Step 5: Find the minimum value - In the interval \( [0, \frac{\pi}{2}] \): - \( f(0) = 3 + 2(0) = 3 \) - \( f(\frac{\pi}{2}) = 3 + 2(\frac{\pi}{2}) = 3 + \pi \) - In the interval \( [\frac{\pi}{2}, \pi] \): - \( f(\frac{\pi}{2}) = 3 + (2\pi - 2(\frac{\pi}{2})) = 3 + \pi \) - \( f(\pi) = 3 + (2\pi - 2\pi) = 3 \) ### Conclusion The minimum value occurs at \( x = 0 \) and \( x = \pi \): \[ \text{Minimum value of } f(x) = 3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-A|100 Videos
  • JEE MAIN 2021

    JEE MAINS PREVIOUS YEAR|Exercise SECTION-B|50 Videos
  • JEE MAIN

    JEE MAINS PREVIOUS YEAR|Exercise QUESTION|1 Videos
  • JEE MAIN 2022

    JEE MAINS PREVIOUS YEAR|Exercise Question|454 Videos

Similar Questions

Explore conceptually related problems

(cos (pi +x ) cos (-x))/(sin(pi - x)cos( pi/2 + x)) =

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x

Knowledge Check

  • f(x)=cos^(2)x+cos^(2)(pi/3+x)-cosx*cos(x+pi/3) is

    A
    an odd function
    B
    an even function
    C
    a periodic function
    D
    f(0)=f(1)
  • The value of ((cos(x/2+x)+sin(pi/2+x))/(cos(pi/2-x)-sin(pi/2-x)))^2 is

    A
    `(1-sin 2x)/(1+sin 2x)`
    B
    `(1+sin 2x)/(1-sin2x)`
    C
    1
    D
    None of these
  • The value of ((cos(x/2+x)+sin(pi/2+x))/(cos(pi/2-x)-sin(pi/2-x)))^2 is

    A
    `(1-sin 2x)/(1+sin 2x)`
    B
    `(1+sin 2x)/(1-sin2x)`
    C
    1
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

    (cos (pi + x) cos (-x)) / (sin (pi-x) cos ((pi) / (2) -x)) = cot ^ (2) x

    If 0

    If f (x) = cos^2 x + cos^2 (pi/3 +x)+ cos x cos (pi/3 + x) then f (x) is :

    Let f(x) = x cos^(-1)(sin-|x|) , x in (-pi/2,pi/2)