Home
Class 14
MATHS
What is the value of (cot x)/(1-tan x)+ ...

What is the value of `(cot x)/(1-tan x)+ (tan x)/(1-cot x)` ?

A

`sin x cos x +1`

B

`sec x cosec x +1`

C

`tan x cot x +1`

D

`sec^(2)x cosec^(2) x+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cot x)/(1-\tan x) + (\tan x)/(1-\cot x)\), we can follow these steps: ### Step 1: Rewrite cotangent and tangent in terms of sine and cosine We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Substituting these into the expression gives: \[ \frac{\cot x}{1 - \tan x} + \frac{\tan x}{1 - \cot x} = \frac{\frac{\cos x}{\sin x}}{1 - \frac{\sin x}{\cos x}} + \frac{\frac{\sin x}{\cos x}}{1 - \frac{\cos x}{\sin x}} \] ### Step 2: Simplify the denominators For the first term: \[ 1 - \tan x = 1 - \frac{\sin x}{\cos x} = \frac{\cos x - \sin x}{\cos x} \] Thus, the first term becomes: \[ \frac{\frac{\cos x}{\sin x}}{\frac{\cos x - \sin x}{\cos x}} = \frac{\cos^2 x}{\sin x (\cos x - \sin x)} \] For the second term: \[ 1 - \cot x = 1 - \frac{\cos x}{\sin x} = \frac{\sin x - \cos x}{\sin x} \] Thus, the second term becomes: \[ \frac{\frac{\sin x}{\cos x}}{\frac{\sin x - \cos x}{\sin x}} = \frac{\sin^2 x}{\cos x (\sin x - \cos x)} \] ### Step 3: Combine the two fractions Now we can combine the two fractions: \[ \frac{\cos^2 x}{\sin x (\cos x - \sin x)} + \frac{\sin^2 x}{\cos x (\sin x - \cos x)} \] Notice that \((\sin x - \cos x) = -(\cos x - \sin x)\), thus we can rewrite the second term: \[ \frac{\sin^2 x}{\cos x (-1)(\cos x - \sin x)} = -\frac{\sin^2 x}{\cos x (\cos x - \sin x)} \] Now we can combine them: \[ \frac{\cos^2 x - \sin^2 x}{(\cos x - \sin x)(\sin x \cos x)} \] ### Step 4: Factor the numerator The numerator can be factored using the difference of squares: \[ \cos^2 x - \sin^2 x = (\cos x - \sin x)(\cos x + \sin x) \] Thus, we have: \[ \frac{(\cos x - \sin x)(\cos x + \sin x)}{(\cos x - \sin x)(\sin x \cos x)} \] ### Step 5: Cancel common factors Assuming \(\cos x \neq \sin x\), we can cancel \((\cos x - \sin x)\): \[ \frac{\cos x + \sin x}{\sin x \cos x} \] ### Step 6: Final expression Thus, the final simplified expression is: \[ \frac{\cos x + \sin x}{\sin x \cos x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x=(-3)/(11) ,the value of (1-cot x)/(1+tan x)+(1+cot x)/(1-tan x) can be expressed as (a)/(b) ,where a and b are coprime positive integers,then value of a+b is

What is the value of (tan A + cot A) sin A x cos A ?

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

cot x+ tan x=

tan^(-1)(cot4x)

differentiate (tan x)^(cot x)+(cot x)^(tan x)

Find the derivative of (tan x-cot x)/(tan x+cot x) with respect to 'x'.

The value of cos [tan^-1 {sin (cot^-1 x)}] is