Home
Class 14
MATHS
If tan a = sqrt(5) - 2, then the value o...

If `tan a = sqrt(5) - 2`, then the value of `tan a - cot a = ? `

A

`- 2`

B

`sqrt(5) + 2`

C

`-4`

D

`2 sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan a = \sqrt{5} - 2 \) and we need to find the value of \( \tan a - \cot a \), we can follow these steps: ### Step 1: Write down the given value of \( \tan a \). We know that: \[ \tan a = \sqrt{5} - 2 \] ### Step 2: Find the value of \( \cot a \). Recall that: \[ \cot a = \frac{1}{\tan a} \] Substituting the value of \( \tan a \): \[ \cot a = \frac{1}{\sqrt{5} - 2} \] ### Step 3: Rationalize \( \cot a \). To rationalize \( \cot a \), we multiply the numerator and the denominator by the conjugate of the denominator: \[ \cot a = \frac{1}{\sqrt{5} - 2} \cdot \frac{\sqrt{5} + 2}{\sqrt{5} + 2} \] This gives us: \[ \cot a = \frac{\sqrt{5} + 2}{(\sqrt{5} - 2)(\sqrt{5} + 2)} \] ### Step 4: Simplify the denominator. Calculating the denominator: \[ (\sqrt{5} - 2)(\sqrt{5} + 2) = 5 - 4 = 1 \] Thus, we have: \[ \cot a = \sqrt{5} + 2 \] ### Step 5: Calculate \( \tan a - \cot a \). Now we can find \( \tan a - \cot a \): \[ \tan a - \cot a = (\sqrt{5} - 2) - (\sqrt{5} + 2) \] This simplifies to: \[ \tan a - \cot a = \sqrt{5} - 2 - \sqrt{5} - 2 = -4 \] ### Final Answer: \[ \tan a - \cot a = -4 \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If tan alpha = sqrt2 + 1 , the value of tan alpha- cot alpha is:

Knowledge Check

  • If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

    A
    2
    B
    `2sqrt3`
    C
    `sqrt3-2`
    D
    4
  • If tan 10^(@) = 2 - sqrt(3) , then the value of tan 15^(@) cot 75^(@) + tan 75^(@) cot 15^(@) is

    A
    14
    B
    12
    C
    10
    D
    8
  • If cosA = 5/13 , find the value of tan A + cot A

    A
    `169/60`
    B
    `12/13`
    C
    1
    D
    `60/169`
  • Similar Questions

    Explore conceptually related problems

    If tan alpha = sqrt(3) and tan beta = (1)/(sqrt(3)) , then find the value of cot (alpha + beta) .

    If tan theta + cot theta = 2 then the value of tan^2 theta + cot^2 theta is

    If tan 15^@=2-sqrt3 , then the value of tan15^@ cot 75^@+tan75^@ cot 15^@ is

    If theta be acute and tan theta + cot theta = 2 , then the value of tan^5 theta+ cot^10 theta is

    If theta is an acute angle and tan theta + cot theta = 2 , then the value of tan^5 theta + cot^5 theta is. यदि theta एक न्यून कोण है और tan theta + cot theta = 2 , तो tan^5 theta + cot^5 theta का मान क्या है?